Actuaries must pass exams, but more than that: they must put knowledge into practice. This coherent book supports the Society of Actuaries' short-term actuarial mathematics syllabus while emphasizing the concepts and practical application of nonlife actuarial models. A class-tested textbook for undergraduate courses in actuarial science, it is also ideal for those approaching their professional exams. Key topics covered include loss modeling, risk and ruin theory, credibility theory and applications and empirical implementation of loss models.

Revised and updated to reflect curriculum changes, this second edition includes two brand-new chapters on loss reserving and ratemaking.

R replaces Excel as the computation tool used throughout – the featured R code is available on the book's webpage, as are lecture slides. Numerous examples and exercises are provided, with many questions adapted from past Society of Actuaries exams.

"This book covers the body of knowledge required by the Society of Actuaries (SOA) for its Fundamentals of Actuarial Mathematics Exam (Sections for short-term coverages) starting from 2023. I believe that it is an ideal textbook for a semester course on the introduction of short-term actuarial mathematics. It is also useful for self-study candidates preparing for the actuarial professional exams."

Wai-Sum Chan, PhD, FSA, HonFIA, CERA Dean, School of Decision Sciences, The Hang Seng University of Hong Kong

Online Resources www.cambridge.org/tse

For instructors

■ Solutions Manual

Prefe	face to the Second Edition	page x	
	face to the First Edition	xi	
	ation and Convention	xiii	
Com	Computation Notes		
Part	t I Loss Models	1	
1	Claim-Frequency Distribution	3	
1.1	Claim Frequency, Claim Severity and Aggregate Claim	4	
1.2	Review of Statistics	4	
1.3	Some Discrete Distributions for Claim Frequency	6	
1.4	The $(a, b, 0)$ Class of Distributions	14	
1.5	Some Methods for Creating New Distributions	19	
1.6	R Laboratory	31	
1.7	Summary and Conclusions	32	
2	Claim-Severity Distribution	37	
2.1	Review of Statistics .	38	
2.2	Some Continuous Distributions for Claim Severity	44	
2.3	Some Methods for Creating New Distributions	47	
2.4	Tail Properties of Claim Severity	54	
2.5	Effects of Coverage Modifications	59	
2.6	R Laboratory	71	
2.7	Summary and Conclusions	71	
3	Aggregate-Loss Models	77	
3.1	Individual Risk and Collective Risk Models	78	
3.2	Individual Risk Model	79	
3.3	Collective Risk Model	86	
3.4	Coverage Modifications and Stop-Loss Reinsurance	93	

-3.5	R Laboratory	97
3.6	Summary and Conclusions	98
Part	II Risk and Ruin	103
4	Risk Measures	105
4.1	Uses of Risk Measures	106
4.2	Some Premium-Based Risk Measures	107
4.3	Axioms of Coherent Risk Measures	108
4.4	Some Capital-Based Risk Measures	110
4.5	More Premium-Based Risk Measures	118
4.6	Distortion-Function Approach	122
4.7	Wang Transform	125
4.8	Summary and Conclusions	127
5	Ruin Theory	131
5.1	Discrete-Time Surplus and Events of Ruin	132
5.2	Discrete-Time Ruin Theory	133
5.3	Summary and Conclusions	144
Part	III Credibility	147
6	Classical Credibility	149
6.1	Framework and Notations	149
6.2	Full Credibility	151
6.3	Partial Credibility	162
6.4	Summary and Discussions	165
7	Bühlmann Credibility	169
7.1	Framework and Notations	170
7.2	Variance Components	171
7.3	Bühlmann Credibility	179
7.4	Bühlmann-Straub Credibility	185
7.5	Summary and Discussions	192
8	Bayesian Approach	199
8.1	Bayesian Inference and Estimation	200
8.2	Conjugate Distributions	209
8.3	Bayesian versus Bühlmann Credibility	211
8.4	Linear Exponential Family and Exact Credibility	216
8.5	R Laboratory	222
8.6	Summary and Discussions	223
	iodonyl Meiot Individual	
9	Empirical Implementation of Credibility	228
9.1	Empirical Bayes Method	229

9.2	Nonparametric Estimation	230	
9.3	Semiparametric Estimation	243	
9.4	Parametric Estimation	244	
9.5	Summary and Discussions	246	
EIR.			
Part	Part IV Model Construction and Evaluation		
10	Model Estimation and Types of Data	255	
10.1	Estimation	256	
10.2	Types of Data	260	
10.3	Summary and Discussions	270	
11	Nonparametric Model Estimation	274	
11.1	Estimation with Complete Individual Data	275	
	Estimation with Incomplete Individual Data	282	
	Estimation with Grouped Data	294	
	R Laboratory	296	
11.5	Summary and Discussions	299	
12	Parametric Model Estimation	307	
12.1	Methods of Moments and Percentile Matching	308	
	Bayesian Estimation Method	314	
	Maximum Likelihood Estimation Method	316	
12.4	Models with Covariates	328	
12.5	Modeling Joint Distribution Using Copula	336	
12.6	R Laboratory	340	
12.7	Summary and Discussions	341	
13	Model Evaluation and Selection	350	
13.1	Graphical Methods	351	
13.2	Misspecification Tests and Diagnostic Checks	355	
13.3	Information Criteria for Model Selection	362	
13.4	R Laboratory	363	
13.5	Summary and Discussions	364	
14	Basic Monte Carlo Methods	370	
14.1	Monte Carlo Simulation	371	
14.2	Uniform Random Number Generators	372	
14.3	General Random Number Generators	374	
14.4	Specific Random Number Generators	383	
14.5	Accuracy and Monte Carlo Sample Size	387	
14.6	Variance Reduction Techniques	390	
14.7	R Laboratory	395	
14.8	Summary and Discussions	395	

-

15	Applications of Monte Carlo Methods	402
15.1	Monte Carlo Simulation for Hypothesis Test	402
15.2	Bootstrap Estimation of p-Value	406
15.3	Bootstrap Estimation of Bias and Mean Squared Error	408
15.4	A General Framework of Bootstrap	412
15.5	R Laboratory	413
15.6	Summary and Discussions	415
Part	V Loss Reserving and Ratemaking	419
16	Loss Reserving	421
16.1	Periods, Premiums and Reserves	421
16.2	Three Methods of Estimating Reserves	425
16.3	Developing Frequency and Severity Separately	432
16.4	Discounting Loss Reserves	438
16.5	R Laboratory	439
16.6	Summary and Discussions	440
17	Ratemaking	448
17.1	Exposure, Expenses, Expected Losses and Premiums	448
	Premium Changes and Earned Premium	452
17.3	Loss Trending	456
	Group Differentials and Their Updates	457
17.5	Policies with Cross Categorization	459
17.6	R Laboratory	469
17.7	Summary and Discussions	470
Appe	endix: Review of Statistics	476
A.1	Distribution Function, Probability Density Function,	
	Probability Function and Survival Function	476
A.2	Random Variables of the Mixed Type and Stieltjes Integral	477
A.3	Expected Value	478
A.4	Mean, Variance and Other Moments	479
A.5	Conditional Probability and Bayes' Theorem	480
A.6	Bivariate Random Variable	481
A.7	Mean and variance of sum of random variables	483
A.8	Moment Generating Function and Probability Generating	
1776	Function	483
A.9	Some Discrete Distributions	485
	Some Continuous Distributions	487
A.11	Conditional Expectation, Conditional Mean and Conditional	0.1-1
	Variance	492
A.12	Compound Distribution	495

A.13 Convolution		495
A.14 Mixture Distribution	1	496
A.15 Bayesian Approach	of Statistical Inference	497
A.16 Conjugate Distribut	ion	498
A.17 Least Squares Estim	ation	503
A.18 Fisher Information a	and Cramér-Rao Inequality	505
A.19 Maximum Likelihoo	od Estimation	508
Answers to Exercises		510
References		530
Index		532