This book studies when a prime p can be written in the form $x^2 + ny^2$. It begins at an elementary level with results of Fermat and Euler and then discusses the work of Lagrange, Legendre and Gauss on quadratic reciprocity and the genus theory of quadratic forms. After exploring cubic and biquadratic reciprocity, the pace quickens with the introduction of algebraic number fields and class field theory. This leads to the concept of ring class field and a complete but abstract solution of $p = x^2 + ny^2$. To make things more concrete, the book introduces complex multiplication and modular functions to give a constructive solution. The book ends with a discussion of elliptic curves and Shimura reciprocity. Along the way the reader will encounter some compelling history and marvelous formulas, together with a complete solution of the class number one problem for imaginary quadratic fields. The book is accessible to readers with modest backgrounds in number theory. In the third edition, the numerous exercises have been thoroughly checked and revised, and as a special feature, complete solutions are included. This makes the book especially attractive to readers who want to get an active knowledge of this wonderful part of mathematics.

For additional information and updates on this book, visit www.ams.org/bookpages/chel-387

Contents

Prefa	ace		ix
	First Edition		ix
	Second Edition		ix
	Third Edition with Solutions		x
Nota	tion	Х	ciii
Intro	duction		1
Chap	ter 1. From Fermat to Gauss		7
§1.	Fermat, Euler and Quadratic Reciprocity		7
	A. Fermat		7
	B. Euler		8
	C. $p = x^2 + ny^2$ and Quadratic Reciprocity		11
	D. Beyond Quadratic Reciprocity		16
	E. Exercises		17
§2.	Lagrange, Legendre and Quadratic Forms		20
	A. Quadratic Forms		20
	B. $p = x^2 + ny^2$ and Quadratic Forms		25
	C. Elementary Genus Theory		27
	D. Lagrange and Legendre		31
	E. Exercises		35
§3.	Gauss, Composition and Genera		38
	A. Composition and the Class Group		38
	B. Genus Theory		43
	C. $p = x^2 + ny^2$ and Euler's Convenient Numbers		48
	D. Disquisitiones Arithmeticae		51
	E. Exercises		53
64.	Cubic and Biquadratic Reciprocity		60
	A. $\mathbb{Z}[\omega]$ and Cubic Reciprocity		60
	B. $\mathbb{Z}[i]$ and Biquadratic Reciprocity		65
	C. Gauss and Higher Reciprocity		67
	D. Exercises		71
Chapt	ter 2. Class Field Theory		77
55.	The Hilbert Class Field and $p = x^2 + ny^2$		77
	A. Number Fields		77
	B. Quadratic Fields		81
	C. The Hilbert Class Field		83

	D. Solution of $p = x^2 + ny^2$ for Infinitely Many n	86
	E. Exercises	91
§6.	The Hilbert Class Field and Genus Theory	95
	A. Genus Theory for Field Discriminants	95
	B. Applications to the Hilbert Class Field	100
	C. Exercises	101
§7.	Orders in Imaginary Quadratic Fields	104
	A. Orders in Quadratic Fields	105
	B. Orders and Quadratic Forms	108
	C. Ideals Prime to the Conductor	113
	D. The Class Number	115
	E. Exercises	118
§8.	Class Field Theory and the Čebotarev Density Theorem	125
	A. The Theorems of Class Field Theory	126
	B. The Cebotarev Density Theorem	133
	C. Norms and Ideles	136
	D. Exercises	137
§9.	Ring Class Fields and $p = x^2 + ny^2$	141
	A. Solution of $p = x^2 + ny^2$ for All n	142
	B. The Ring Class Fields of $\mathbb{Z}[\sqrt{-27}]$ and $\mathbb{Z}[\sqrt{-64}]$	145
	C. Primes Represented by Positive Definite Quadratic Forms	148
	D. Ring Class Fields and Generalized Dihedral Extensions	150
	E. Exercises	152
Char	oton 2 Complex Multiplication	157
	oter 3. Complex Multiplication Elliptic Eupotions and Complex Multiplication	157
§10.		157
	A. Elliptic Functions and the Weierstrass &-Function D. The i Inversions of a Lettice	157
	B. The j-Invariant of a Lattice C. Complex Multiplication	162
	C. Complex Multiplication D. Evereiges	164
¢11	D. Exercises Modular Functions and Ding Class Fields	170
§11.		173
	A. The j-Function D. Madular Eupotions for Γ (m)	173
	B. Modular Functions for $\Gamma_0(m)$	177
	C. The Modular Equation $\Phi_m(X,Y)$ D. Complex Multiplication and Ding Class Fields	181
	D. Complex Multiplication and Ring Class Fields Exercises	185
210	E. Exercises Modulor Functions and Singular i Invenients	190
§12.		195
	A. The Cube Root of the j-Function D. The Weber Eugetiens	195
	B. The Weber Functions C. A. Inversion to a f. Ondone of Class Number 1	201
	C. j-Invariants of Orders of Class Number 1	205
	D. Weber's Computation of $j(\sqrt{-14})$	207
	E. Imaginary Quadratic Fields of Class Number 1	213
019	F. Exercises The Class Faustion	216
§13.		225
	A. Computing the Class Equation D. Computing the Madular Equation	225
	B. Computing the Modular Equation C. Theorems of Downing Cross and Zarian	231
	C. Theorems of Deuring, Gross and Zagier D. Evereiges	235
	D. Exercises	238

CONTENTS	CONTENTS				v
----------	----------	--	--	--	---

Chapter 4. Additional Topics	243	
§14. Elliptic Curves	243	
A. Elliptic Curves and Weierstrass Equations	243	
B. Complex Multiplication and Elliptic Curves	246	
C. Elliptic Curves over Finite Fields	249	
D. Elliptic Curve Primality Tests	255	
E. Exercises	261	
§15. Shimura Reciprocity	265	
A. Modular Functions	265	
B. The Shimura Reciprocity Theorem	269	
C. Extended Ring Class Fields	272	
D. Shimura Reciprocity for Extended Ring Class Fields	274	
E. Shimura Reciprocity for Ring Class Fields	278	
F. Class Field Theory	284	
G. Exercises	291	
Solutions by Roger Lipsett and David Cox	297	
Solutions to Exercises in §1	298	
Solutions to Exercises in §2	306	
Solutions to Exercises in §3	320	
Solutions to Exercises in §4	340	
Solutions to Exercises in §5	354	
Solutions to Exercises in §6	367	
Solutions to Exercises in §7	378	
Solutions to Exercises in §8	397	
Solutions to Exercises in §9	406	
Solutions to Exercises in §10	421	
Solutions to Exercises in §11	432	
Solutions to Exercises in §12	445	
Solutions to Exercises in §13	473	
Solutions to Exercises in §14	486	
Solutions to Exercises in §15	496	
References		
Further Reading		
Index		