
Contents

Preface page xiii

Introduction 1

Part I Iterative Algorithms and Loop Invariants

1 Iterative Algorithms: Measures of Progress and Loop Invariants 5
1.1 A Paradigm Shift: A Sequence of Actions vs. a Sequence of Assertions 5
1.2 The Steps to Develop an Iterative Algorithm 9
1.3 More about the Steps 13
1.4 Different Types of Iterative Algorithms 21
1.5 Code from Loop Invariants 28
1.6 Typical Errors 31
1.7 Exercises 32

2 Examples Using More-of-the-Input Loop Invariants 33
2.1 Coloring the Plane 33
2.2 Deterministic Finite Automaton 35
2.3 More of the Input vs. More of the Output 42

3 Abstract Data Types 47
3.1 Specifications and Hints at Implementations 47
3.2 Link List Implementation 55
3.3 Merging with a Queue 61
3.4 Parsing with a Stack 62

4 Narrowing the Search Space: Binary Search 64
4.1 Binary Search Trees 64
4.2 Magic Sevens 66
4.3 VLSI Chip Testing 68
4.4 Exercises 72

5 Iterative Sorting Algorithms 74
5.1 Bucket Sort by Hand 74



5.2 Counting Sort (a Stable Sort) 75
5.3 Radix Sort 78

6 More Iterative Algorithms 80
6.1 Euclid’s GCD Algorithm 80
6.2 Multiplying 84

7 The Loop Invariant for Lower Bounds 88

8 Key Concepts Summary: Loop Invariants and Iterative Algorithms 97
8.1 Loop Invariants and Iterative Algorithms 97
8.2 System Invariants 99

9 Additional Exercises: Parti 102

10 Partial Solutions to Additional Exercises: Part I 124

Part II Recursion

11 Abstractions, Techniques, and Theory 133
11.1 Thinking about Recursion 133
11.2 Looking Forward vs. Backward 134
11.3 With a Little Help from Your Friends 135
11.4 The Towers of Hanoi 138
11.5 Checklist for Recursive Algorithms 139
11.6 The Stack Frame 144
11.7 Proving Correctness with Strong Induction 146

12 Some Simple Examples of Recursive Algorithms 149
12.1 Sorting and Selecting Algorithms 149
12.2 Operations on Integers 157
12.3 Ackermann’s Function 162
12.4 Fast Fourier Transformations 163
12.5 Exercise 168

13 Recursion on Trees 169
13.1 Tree Traversals 174
13.2 Simple Examples 177
13.3 Heap Sort and Priority Queues 180
13.4 Representing Expressions with Trees 187

14 Recursive Images 192
14.1 Drawing a Recursive Image from a Fixed Recursive and a Base Case

Image 192
14.2 Randomly Generating a Maze 195



15 Parsing with Context-Free Grammars 198

16 Key Concepts Summary: Recursion 208

17 Additional Exercises: Part II 211

18 Partial Solutions to Additional Exercises: Part II 230

Part III Optimization Problems

19 Definition of Optimization Problems 241

20 Graph Search Algorithms 243
20.1 A Generic Search Algorithm 243
20.2 Breadth-First Search for Shortest Paths 248
20.3 Dijkstra’s Shortest-Weighted-Path Algorithm 253
20.4 Depth-First Search 259
20.5 Recursive Depth-First Search 263
20.6 Linear Ordering of a Partial Order 264
20.7 Exercise 267

21 Network Flows and Linear Programming 268
21.1 A Hill-Climbing Algorithm with a Small Local Maximum 270
21.2 The Primal-Dual Hill-Climbing Method 276
21.3 The Steepest-Ascent Hill-Climbing Algorithm 284
21.4 Linear Programming 288
21.5 Exercises 293

22 Greedy Algorithms 294
22.1 Abstractions, Techniques, and Theory 294
22.2 Examples of Greedy Algorithms 307
22.3 Exercises 320

23 Recursive Backtracking 321
23.1 Recursive Backtracking Algorithms 321
23.2 The Steps in Developing a Recursive Backtracking 325
23.3 Pruning Branches 329
23.4 Satisfiability 331
23.5 Exercises 334

24 Dynamic Programming Algorithms 336
24.1 Start by Developing a Recursive Backtracking Algorithm 336
24.2 The Steps in Developing a Dynamic Programming Algorithm 340
24.3 Subtle Points 346



24.4 The Longest-Common-Subsequence Problem 364
24.5 Dynamic Programs as More-of-the-Input Iterative Loop Invariant 

Algorithms 368
24.6 A Greedy Dynamic Program: The Weighted Job/Event Scheduling 

Problem 371

25 Designing Dynamic Programming Algorithms via Reductions 375

26 The Game of Life 380
26.1 Graph G from Computation 380
26.2 The Graph of Life 382
26.3 Examples of the Graph of Life 385

27 Solution Is a Tree 390
27.1 The Solution Viewed as a Tree: Chains of Matrix Multiplications 390
27.2 Generalizing the Problem Solved: Best AVL Tree 395
27.3 All Pairs Using Matrix Multiplication 397
27.4 Parsing with Context-Free Grammars 398

28 Reductions and NP-Completeness 402
28.1 Satisfiability Is at Least as Hard as Any Optimization Problem 404
28.2 Steps to Prove NP-Completeness 407
28.3 Example: 3-Coloring Is NP-Complete 415
28.4 An Algorithm for Bipartite Matching Using the Network Flow 

Algorithm 419

29 Randomized Algorithms 423
29.1 Using Randomness to Hide the Worst Cases 423
29.2 Solutions of Optimization Problems with a Random Structure 427

30 Machine Learning 431

31 Key Concepts Summary: Greedy Algorithms and Dynamic Programming 439
31.1 Greedy Algorithms 439
31.2 Dynamic Programming 444

32 Additional Exercises: Part III 454
32.1 Graph Algorithms 454
32.2 Greedy Algorithms 457
32.3 Dynamic Programming 465
32.4 Reductions and NP-Completeness 476

33 Partial Solutions to Additional Exercises: Part III 482
33.1 Graph Algorithms 482



33.2 Greedy Algorithms 482
33.3 Dynamic Programming 485
33.4 Reductions and NP-Completeness 492

Part IV Additional Topics

34 Existential and Universal Quantifiers 499

35 Time Complexity 508
35.1 The Time (and Space) Complexity of an Algorithm 508
35.2 The Time Complexity of a Computational Problem 513

36 Logarithms and Exponentials 515

37 Asymptotic Growth 518
37.1 Steps to Classify a Function 519
37.2 More about Asymptotic Notation 525

38 Adding-Made-Easy Approximations 529
38.1 The Technique 530
38.2 Some Proofs for the Adding-Made-Easy Technique 534

39 Recurrence Relations 540
39.1 The Technique 540
39.2 Some Proofs 543

40 A Formal Proof of Correctness 549

41 Additional Exercises: Part IV 551
41.1 Existential and Universal Quantifiers 551
41.2 Time Complexity 553
41.3 Asymptotic Growth 554
41.4 Adding Made-Easy Approximations 554

42 Partial Solutions to Additional Exercises: Part IV 556
42.1 Existential and Universal Quantifiers 556
42.2 Time Complexity 560

Exercise Solutions 561

Conclusion 588

Index 589


