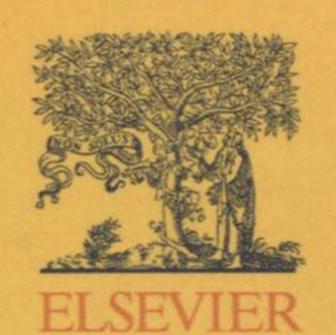
Methods and Applications of Geochronology

Edited by J. Gregory Shellnutt, Steven W. Denyszyn and Kenshi Suga


Methods and Applications of Geochronology provides a comprehensive, practical guide to the rapidly developing field of geochronology. Chapters are written by leading experts in their specific field of geochronology and discuss practical information and best practices for establishing laboratories, using appropriate analytical equipment, and handling data. Methods and Applications of Geochronology is an authoritative guide not only for the foundational principles of geochronological research, but also descriptions of analytical methods, guidance for sample selection, all the way to data reduction and presentation.

Key Features

- Features the latest techniques and recommended tools for the most common geochronological methods.
- Includes perspectives from a variety of well-respected researchers in the field, each representing different specialties of geochronology.
- · Bridges the gap between theory and application, offering practical advice and relevant case studies throughout.
- J. Gregory Shellnutt is a Professor in the Department of Earth Sciences, National Taiwan Normal University. His research focuses on the geochemistry and geochronology of magmatic rocks from large igneous provinces, Precambrian mafic dyke swarms, the Central African Orogenic Belt, and the Appalachian Orogeny. He was awarded Young Scientist awards from the Mineralogical Association of Canada and Academia Sinica, the Ministry of Science and Technology (Taiwan) Outstanding Research Award in 2015 and 2022, and the Ma Ting Ying and Wang Hanzhuo awards from the Geological Society of Taiwan. Greg is currently the Co-Editor-in Chief of Lithos, Associate Editor of the Journal of the Geological Society of India, and editorial board member of Scientific Reports and Frontiers in Earth Science.

Steven W. Denyszyn is an Assistant Professor in the Department of Earth Sciences at Memorial University of Newfoundland, Canada. Previous affiliations include the University of Toronto, the Berkeley Geochronology Center, and the University of Western Australia. He primarily uses high-precision U-Pb geochronology to study the timing and rates of igneous processes, particularly large igneous provinces and magmatic ore deposits, as well as mass extinctions, paleocontinental reconstructions, and tectonics.

Dr. Kenshi Suga is a Research Fellow in the Department of Earth Sciences, National Taiwan Normal University. He is the manager of the LA-ICP-MS/MS laboratory and focuses on the development of analytical methods for in situ dating using alpha (U-Pb) and beta (e.g. Lu-Hf, Rb-Sr, Re-Os) decay systems and provides lectures and training to visiting faculty and graduate students. Kenshi has served on the editorial board of Frontiers in Earth Science. As of 2024, he is a researcher with a glass and ceramic products company in Japan with expertise in geosciences.

Contributors Preface		xiii xvii
1.	Introduction to methods and applications of geochronology: A perspective on geological time J. Gregory Shellnutt, Steven W. Denyszyn and Kenshi Suga	1
	 Introduction Awareness and observation of geological and biological time: 	1
	pre-20th century 3. In search of an absolute time References	12 16
2.	High-precision CA-ID-TIMS U-Pb geochronology of zircon: Materials, methods, and interpretations	19
	Urs Schaltegger, Maria Ovtcharova and Blair Schoene	
	1. Introduction	19
	2. Establishing a U-Pb dating infrastructure and installing best practices	21
	3. Quality assessment	33
	4. Interpretation of high-precision U-Pb zircon dates	39
	5. Summary, TTTT—the three top tips References	45
3.	lon microprobe accessory mineral geochronology	53
	Axel K. Schmitt, Allen Kennedy and Kevin Chamberlain	
	1. Introduction	53
	2. Method and instrumentation fundamentals	56
	3. Sample preparation	67
	4. Instrumental settings for geochronology, uncertainty treatment, and	
	data representation	70
	5. Application examples6. Summary and outlook	77
	References	92

4.	High-speed U—Pb age determinations using a laser ablation-ICP-MS technique	105
	Takafumi Hirata and Hideki Iwano	
	1. Background	105
	2. Laser ablation-ICP-MS system setup	106
	3. Multiple collector-ICP-MS systems	108
	4. Uranium—lead dating from transient signals	112
	5. ICP-time-of-flight type mass spectrometers	115
	6. Multiple spot laser ablation protocol	117
	7. Sample preparation	119
	8. Chemical abrasion	120
	9. Data processing	122
	10. Highlighting recent progress in U-Pb geochronology using LA-ICPMS	124
	11. Summary	128
	References	130
5.	Zircon fission-track and U-Pb multi-method geochronology using laser ablation-ICP-mass spectrometry	135
	Hideki Iwano, Tohru Danhara and Takafumi Hirata	
	1. Introduction	135
	2. α-decay and spontaneous fission	136
	3. Fission-track counting	138
	4. Measurement of U	138
	5. An example of LA-ICP-MS zircon double dating	142
	6. Age analysis for several reference materials	142
	7. Applications	146
	8. Concluding remarks and future prospects	153
	9. Supplementary: description of zircon samples	153
	Acknowledgments	156
	References	156
	A technical note on simple, compact, and easy mineral separation	
	procedures for a small amount of rock sample	161
	Tohru Danhara and Hideki Iwano	
	1. Introduction	161
	2. From rock crushing to preparation of sample mount	161
	3. Heavy liquid separation procedure	165
	Acknowledgments	167
	References	167

6. U-Th-Pb phosphate geochronology by LA-ICP-MS	169
David Chew	
1. Introduction	169
2. Petrogenesis and U—Th—Pb systematics of apatite and monazite-xenotime	172
3. Setup, materials, and equipment	180
4. Analytical protocol	183
5. Standardization	187
6. Potential challenges in U—Pb phosphate dating	194
7. Future developments	197
Acknowledgments	199
References	199
7. In situ beta decay dating by LA-ICP-MS/MS:	
Fundamentals and methodology	211
Thomas Zack and Sarah Gilbert	
1. Introduction	211
2. LA-ICP-MS/MS instrumentation	213
3. Long-lived beta decay systems of geologic significance	215
4. Decay constants (λ) for beta decay systems	219
5. Isotopic abundances and extended family relationships	220
6. Principles of ion-molecule reactions	221
7. Setting up a protocol for LA-ICP-MS/MS beta decay dating	231
8. Outlook	236
Appendix A. Supplementary data	237
References	237
8. In situ beta decay dating by LA-ICP-MS/MS: applications	243
Sarah E. Gilbert, Stijn Glorie and Thomas Zack	
1. Introduction	243
2. Lu—Hf geochronology	244
3. Rb—Sr geochronology	259
4. K—Ca geochronology	272
5. Re—Os geochronology	278
6. Future directions	284
Appendix 1. Instrument analytical conditions	285

	Acknowledgments	288
	References	288
9.	The complexities in interpreting Argon isotopes:	
	Chock-full of components	297
	Vera Assis Fernandes, Ray Burgess and Hirochika Sumino	
	1. Introduction and scope	297
	2. Brief introduction to $^{40}\text{K/}^{40}\text{Ar}$ and $^{40}\text{Ar/}^{39}\text{Ar}$ dating	298
	3. Different Ar components and their sources	306
	4. Data presentation	310
	5. 40K/40Ar data correction and interpretation	313
	6. 40 Ar/39 Ar data interpretation	320
	7. Final considerations	335
	Acknowledgments	336
	References	336
0.	Obtaining accurate ages of basaltic rocks using 40Ar/39Ar techniques	345
	Qiang Jiang and Fred Jourdan	
	1. Introduction	345
	2. Overview of the analytical methodology and procedures	347
	3. The choice of ⁴⁰ Ar/ ³⁹ Ar dating materials for basaltic rocks	348
	4. The preparation and treatment of dating materials	354
	5. The interpretation of analytical data: Criteria for a robust 40Ar/39Ar age	356
	6. Final remarks	362
	References	362
11.	Approaches and best practices for dating orogenic	
	processes using 40Ar/39Ar geochronology	367
	Dawn A. Kellett, Clare J. Warren and Alfredo Camacho	
	1. Fundamentals of ⁴⁰ Ar/ ³⁹ Ar geochronology	367
	2. ⁴⁰ Ar sources in rocks and minerals	369
	3. Controls on argon mobility	371
	4. Designing a 40 Ar/39 Ar study on rocks from an orogenic setting	374
	5. 40 Ar/39 Ar data acquisition methods	377

6. Presenting and interpreting 40 Ar/39 Ar results	380
7. Diffusion modeling approaches	384
8. Case studies	385
9. Future directions	396
10. Summary/conclusions	396
Acknowledgments	397
References	397
12. Application of in situ 40 Ar/39 Ar laser probe analysis to	
a continental shear belt	401
Chieh-Yu Wu, Meng-Wan Yeh, Ching-Hua Lo and Yun-Chieh Lo	
1. Introduction	401
2. Case study: Geological setting and previous age constraints	405
3. Methodology	408
4. Results	418
5. Interpretation	431
6. Conclusions	439
Acknowledgments	440
References	441
13. A method and application for the integration of geology,	
geochronology, and paleontology: Case studies for	
important Mesozoic evolutionary events in East Asia	445
Su-Chin Chang, Rui Pei, Jun Wang and Daran Zheng	
1. Introduction	445
2. Step-by-step guide for dating fossils	446
3. Early Triassic-marine reptile radiation	449
4. Early-Middle Triassic-basal archosaurian appearance and radiation	454
5. Middle Jurassic—When did the first flowers appear?	460
6. Conclusions	465
Appendix: Methods	465
References	469
14. Growth kinetics of metamorphic minerals and the	
implications for metamorphic geochronology and geology:	
some case studies of metamorphic zircon	479
Kazuhiro Miyazaki	
1. Introduction	479
2. Growth kinetics of a metamorphic mineral	480
3. Discrimination method for growth kinetics	485

4.	Separation of metamorphic mineral ages with a Gaussian mixing model	486
5.	Application to zircon ages of the high-P Nagasaki complex	490
6.	Application to zircon ages for the high-T Ryoke complex	494
7.	Discussion	499
8.	Conclusions	506
Ар	pendix	507
Acl	knowledgments	508
Ref	ferences	508