

What a wonderful book! I strongly recommend this book to anyone, especially graduate students, interested in getting a sense of 4-manifolds.

-MAA Reviews

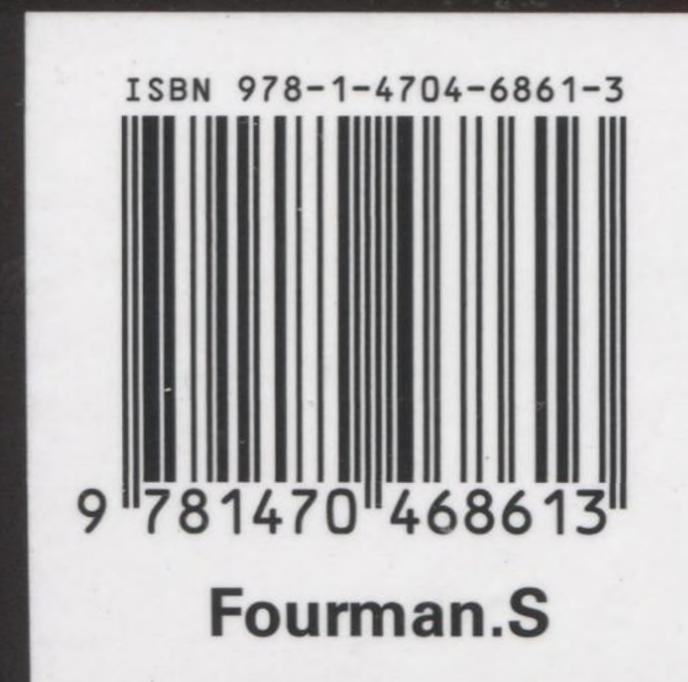
The book gives an excellent overview of 4-manifolds, with many figures and historical notes. Graduate students, nonexperts, and experts alike will enjoy browsing through it.

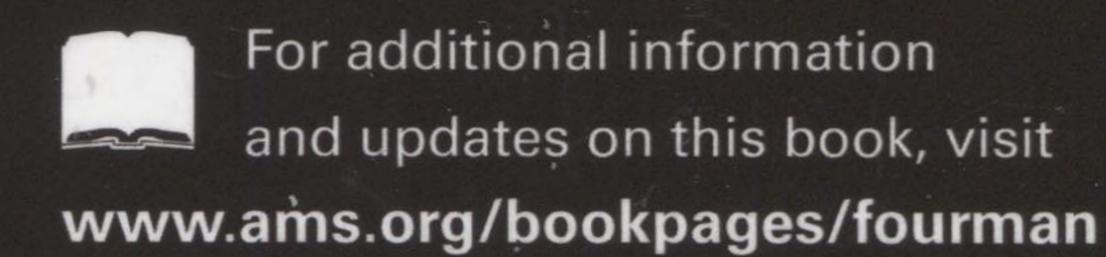
- Robion C. Kirby, University of California, Berkeley

This book offers a panorama of the topology of simply connected smooth manifolds of dimension four. Dimension four is unlike any other dimension; it is large enough to have room for wild things to happen, but small enough so that there is no room to undo the wildness. For example, only manifolds of dimension four can exhibit infinitely many distinct smooth structures. Indeed, their topology remains the least understood today.

To put things in context, the book starts with a survey of higher dimensions and of topological 4-manifolds. In the second part, the main invariant of a 4-manifold—the intersection form—and its interaction with the topology of the manifold are investigated. In the third part, as an important source of examples, complex surfaces are reviewed. In the final fourth part of the book, gauge theory is presented; this differential-geometric method has brought to light how unwieldy smooth 4-manifolds truly are, and while bringing new insights, has raised more questions than answers.

The structure of the book is modular, organized into a main track of about two hundred pages, augmented by extensive notes at the end of each chapter, where many extra details, proofs and developments are presented. To help the reader, the text is peppered with over 250 illustrations and has an extensive index.





Previe	·W	vii
Conte	nts of the Notes	XV
Introduction		1
Front	Front matter	
Part I.	Background Scenery	
Conte	nts of Part I	25
Chapt	er 1. Higher Dimensions and the <i>h</i> –Cobordism Theorem	27
1.1.	The statement of the theorem.	28
1.2.	Handle decompositions.	32
1.3.	Handle moves.	40
1.4.	Outline of proof.	43
1.5.	The Whitney trick.	45
1.6.	Low and high handles; handle trading.	47
1.7.	Notes.	54
Chapt	er 2. Topological 4–Manifolds and <i>h</i> –Cobordisms	69
2.1.	Casson handles.	70
2.2.	The topological h –cobordism theorem.	80
2.3.	Homology 3–spheres bound fake 4–balls.	83
2.4.	Smooth failure: the twisted cork.	89
2.5.	Notes.	91
		-

Part II. Smooth 4-Manifolds and Intersection Forms

Contents of Part II		107
Chapte	r 3. Getting Acquainted with Intersection Forms	111
3.1.	Preparation: representing homology by surfaces.	112
3.2.	Intersection forms.	115
3.3.	Essential example: the <i>K</i> 3 surface.	127
3.4.	Notes.	134
Chapte	r 4. Intersection Forms and Topology	139
4.1.	Whitehead's theorem and homotopy type.	140
4.2.	Wall's theorems and <i>h</i> –cobordisms.	149
4.3.	Intersection forms and characteristic classes.	160
4.4.	Rokhlin's theorem and characteristic elements.	168
4.5.	Notes.	173
Chapte	er 5. Classifications and Counterclassifications	237
5.1.	Serre's algebraic classification of forms.	238
5.2.	Freedman's topological classification.	239
5.3.	Donaldson's smooth exclusions.	243
5.4.	Byproducts: exotic \mathbb{R}^4 's.	250
5.5.	Notes.	260
Part III	I. A Survey of Complex Surfaces	
Conter	ats of Part III	273
Chapte	er 6. Running through Complex Geometry	275
6.1.	Surfaces.	275
6.2.	Curves on surfaces.	277
6.3.	Line bundles.	278
6.4.	Notes.	283
Chapte	er 7. The Enriques–Kodaira Classification	285
7.1.	Blow-down till nef.	286
7.2.	How nef: numerical dimension.	292
7.3.	Alternative: Kodaira dimension.	294
7.4.	The Kähler case.	295
7.5.	Complex versus diffeomorphic.	296

7.6. Notes.	299	
Chapter 8. Elliptic Surfaces	301	
8.1. The rational elliptic surface.	302	
8.2. Fiber-sums.	306	
8.3. Logarithmic transformations.	310	
8.4. Topological classification.	314	
8.5. Notes.	317	
Part IV. Gauge Theory on 4–Manifolds		
Contents of Part IV	327	
Chapter 9. Prelude, and the Donaldson Invariants	331	
9.1. Prelude.	332	
9.2. Bundles, connections, curvatures.	333	
9.3. We are special: self-duality.	350	
9.4. The Donaldson invariants.	353	
9.5. Notes.	357	
Chapter 10. The Seiberg–Witten Invariants	375	
10.1. Almost-complex structures.	376	
10.2. Spin ^C structures and spinors.	382	
10.3. Definition of the Seiberg–Witten invariants.	396	
10.4. Main results and properties.	404	
10.5. Invariants of symplectic manifolds.	409	
10.6. Invariants of complex surfaces.	412	
10.7. Notes.	415	
Chapter 11. The Minimum Genus of Embedded Surfaces	481	
11.1. Before gauge theory: Kervaire–Milnor.	482	
11.2. Enter the hero: the adjunction inequality.	486	
11.3. Digression: the happy case of 3–manifolds.	491	
11.4. Notes.	496	
Chapter 12. Wildness Unleashed: The Fintushel–Stern Surgery		
12.1. Gluing results in Seiberg–Witten theory.	532	
12.2. Review: the Alexander polynomial of a knot.	539	
12.3. The knot surgery.	541	
12.4. Applications.	545	

12.5. Notes.	547
Epilogue	557
List of Figures and Tables	559
Bibliography	567
Index	587
Errata	611