"Plate tectonics is the topic that made me want to become a geologist. I've waited for nearly two decades for the book that would help convey my interest in this topic to undergraduate students. The online exercises, emodule, and animations are especially valuable teaching aids. I plan to switch to this textbook right away."

Professor Sarah Titus, Carleton College

"Plate tectonics is the most rapidly evolving field within Earth science and this textbook provides students with a comprehensive, 21st-century overview of the latest discoveries and changes of opinion. It is a highly valuable resource for all geoscience educators."

Professor Richard Palin, University of Oxford

"Incredibly detailed and thorough, well-referenced and grounded in the literature, this book makes complex concepts accessible, through the use of detailed and beautiful color figures. I highly recommend this text for any upper-level undergraduate or graduate plate tectonics course."

Professor Cara Burberry, University of Nebraska-Lincoln

"This highly accessible and beautifully illustrated book provides a comprehensive summary of progress over the past 50 years of research on plate tectonics in decoding the imprint of plate interactions through the lens of modern structural geology."

Professor Jeffrey A. Karson, Syracuse University

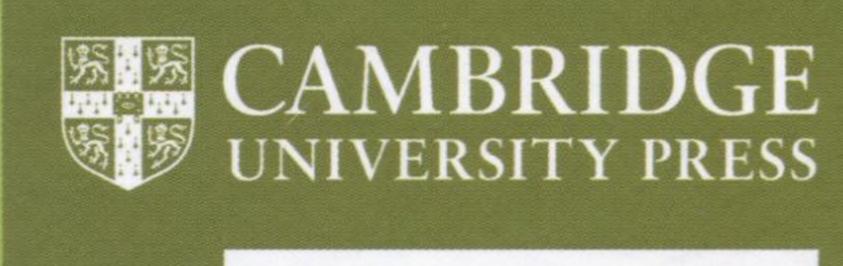
This advanced undergraduate textbook provides a thoroughly modern overview of plate tectonics and is the perfect resource for a capstone course for geology majors. It presents plate tectonics as a multifaceted and interdisciplinary theory that unites many different geological observations and processes into a unique and harmonious model, so that readers grasp how the outer part of our planet works in relation to the deep interior. Supported by clear prose, helpful analogies, and stunning color imagery, readers will gain an in-depth understanding of how and why plates interact to produce different topography, rock assemblages, and deformation features along plate boundaries.

Key features:

- An author pairing renowned for their research, teaching, and textbook-writing experience
- Comprehensive coverage for a single-semester course without being overwhelming
- A unifying presentation that synthesizes and connects topics covered earlier in a geoscience curriculum
- An emphasis on understanding processes and physical fundamentals, with an accessible introduction to quantitative topics
- Up-to-date scholarship that explores some of the latest research questions in Earth science
- A comparison of tectonic processes on Earth with other terrestrial bodies and discussion of the latest evidence and theories for the
 evolution of tectonics through geologic time
- Data and imagery from a variety of global settings connecting the theory with geological phenomena seen in the field
- A spectacular range of color photos, maps, models, and schematics to illustrate important concepts and convey the vibrancy of the topic
- Student-friendly features that chart clear paths through every chapter, including learning objectives, highlighted statements, focus boxes that explore key concepts, end-of-chapter summaries, review questions, and a glossary

Online Resources www.cambridge.org/platetectonics

For students


- Quantitative exercises utilizing a range of interactive online visualization and mapping tools
- **Animations**
- Extensive interactive e-module
- Curated set of recommended websites
- Glossary flashcards

For instructors

- Electronic images in jpeg and PowerPoint formats
- Sample answers to end-of-chapter review questions
- Solutions to quantitative exercises

Cover image: Nejc Gostincar, via Getty Images. The Mid-Atlantic Ridge at Thingvellir, Iceland, is a unique location where the divergent boundary between the North American and Eurasian tectonic plates can be observed on land.

Cover design: Andrew Ward

Preface How to Use This Book	e vii	5
Introduction to a Tectonically Unique Planet 1.1 Geotectonics, Plate Tectonics, and Related Terms 1.2 Plate Tectonics: A Unifying Theory for the Earth Sciences	1 2	Plates, Plumes, and Kinematics 5.1 Historic Perspective 5.2 Plates and Plate Boundaries 5.3 Hotspots, Plumes, and Large Igneous Provinces 98 5.4 Absolute versus Relative Plate Motions 5.5 Euler Poles and Plate Motion on a Sphere 5.6 Paleomagnetism and Polar Wander Paths 5.7 The Wilson Cycle 5.8 Continental Drift Reconstructions 111
2		6
Deformation, Stress, and Strain 2.1 Our Dynamic Planet 2.2 Forces and Stress 2.3 Deformation 2.4 Deformation History and Flow 2.5 Rheology and Mechanics 2.6 Deformation Structures 2.7 Microstructures, Stress, Strain Rate, and Crustal Strength 2.8 Stress in the Crust	11 12 14 16 19 22 25 28	Continental Rifting 6.1 Definition and Characteristics 6.2 Rift Initiation: Why and How 6.3 Continental Rifting and Tectonic Setting 6.4 Rift Magmatism 6.5 Wide versus Narrow Rifts 6.6 Structural Characteristics and Evolution 6.7 Rift Basins 119 120 120 121 121 122 123 124 125 126 127 127 128 129 129 120 120 121 121 121 122 123 124 125 126 127 127 128 129 129 120 120 120 120 120 121 120 120 120 120
Heat, Isostasy, Petrology, and Basins 3.1 Gravity and Isostasy 3.2 Heat Production, Heat Transfer 3.3 Magmatic Petrology 3.4 Metamorphism and Metamorphic Reactions 3.5 Sedimentary Basins	35 36 39 53 55 60	Passive Continental Margins 7.1 Perspective on Passive Margins 7.2 Characteristics and Variations 7.3 Rift to Drift – The Red Sea Example 7.4 Volcanic versus Magma-Poor Margins 7.5 Strain, Width, and Rheology 7.6 Location of New Oceans 7.7 Subsidence, Uplift, and Depositional Patterns 7.8 Gravity, Salt, and Mud 7.9 The South Atlantic Case 7.10 Transform Continental Margins 140 150 150 150 150 150 150 150 150 150 15
Earth, Its Interior, and How It		8
Works 4.1 Early Theories and New Sources of Information 4.2 Structure of our Planet 4.3 Physics and Dynamics	67 68 76 85	Seafloor Spreading 8.1 Oceanic Lithosphere 8.2 The Making of Oceanic Crust 8.3 Hydrothermal Activity and Ocean Floor Metamorphism 179 180 182
The Thijohoo wife Difficultion	00	Trictainoi pinisin

	Fast and Slow Spreading Oceanic Core Complexes	187 188	13	
	Ophiolites	190	Collisional Orogeny 13.1 Collisional and Intracontinental	305
9			Orogens 13.2 The Anatomy of a Collisional	306
	anic Transform Faults and		Orogen	307
	ture Zones	195	13.3 The Evolution of Collisional	
	Ocean Floor Lineaments Characteristics of Oceanic Transform	196	Orogens	314
9.2	Characteristics of Oceanic Transform Faults	196	13.4 Intracontinental Orogeny 13.5 Erocional and Depositional Patterns	320
9.3	Oceanic Fracture Zones	208	13.5 Erosional and Depositional Patterns	326
10			14	
10			Orogenic Belts – Case Studies	341
Con	tinental Strike-Slip	215	14.1 Introduction	342
	Characteristics of Strike-Slip Faults	216	14.2 The Alps	342
	Continental Transform Faults	220	14.3 Himalaya-Tibet	349
10.3	Intracontinental Strike-Slip	232	14.4 Southwest Scandinavian Caledonides –	
11			Deep and Cool Continental Subduction	250
-			14.5 The Hot Grenville Orogen	359 363
Oce	anic Subduction	239	The first dictivine orogen	303
11.1	Subduction System from Planetary		15	
	Scale to Plate Boundary	240		
	The Arc-Trench Region	243	Formation of Earth, Early Tectonics,	
	Subduction Kinematics	253	and Continental Growth	371
	Subduction Dynamics Subduction Seismicity and Slab Dip	260	15.1 Early Earth's Tectonics	372
	The Fate of Slabs	267 268	15.2 Formation of our Terrestrial	
	Subduction Initiation	269	Planet	372
			15.3 Hadean Tectonics15.4 Continental Growth Through Time	378 387
12			15.4 Continental Growth Infought Time	301
Accı	retionary Orogeny	275	16	
	Mountain Belts - An Introduction	276	Evolution into Modern Tectonics	393
12.2	Oceanic and Accretionary Orogens	277	16.1 Archean Tectonics	394
12.3	Arc Collisions	279	16.2 Proterozoic Tectonics - Assembly	371
	Microcontinents on the Move	283	and Dispersal of Supercontinents	406
12.5	The Andes: Accretion onto an Active		16.3 Phanerozoic Tectonics - Gondwana	
10.0	Continental Margin	285	and Pangea	417
12.6	Terrane Accretion: The North American Cordillera	201		
12.7	Sierra Nevada Magmatic Arc and	291	Glossary	421
12./	the Sevier Orogeny	296	References	433
12.8	Surface Processes, Climate,		Cover and Chapter Image Captions	444
	and Biodiversity	298	Index	446