

CONTENTS

	PAGE
SECTION I	
SCREW THREADS	I
Thread forms and tolerances—American Standard screw threads for bolts, machine screws, nuts, and commercially tapped holes—Identification symbols—Form of thread—Two-thread series—Tolerances—Loose fit, American National coarse-thread series—Loose-fit allowances and tolerances for screws and nuts—Free, medium, and close fits, coarse-thread series—General dimensions, coarse-thread series—Loose, free, medium, and close fits, fine-thread series—Effect of lead and angle error—Standard machine-screw threads, coarse and fine—Three-thread series, 8, 12, and 16 pitch—Extra-fine threads—Free fits, pitch increments, and diameter increments of pitch—Diameter tolerances—Free-fit screws and nuts in extra-fine thread series—Medium-fit screws in extra-fine thread series—Medium-fit nuts in extra-fine thread series—British Standard Whitworth threads—British Association (B.A.) screw threads—Rolled threads—Dardelet screw threads—Watch screw threads—British Association standard—Buttress—International (Metric)—Square—Lowenherz-German—V, 60-degree sharp—Thury's Swiss—Whitworth standard threads—Acme threads—Modified Acme—Modified square thread—American National Acme general purpose thread series—Recommended pitches, major diameters, and basic thread data, American National Acme threads—Limiting dimensions and tolerances, Acme threads—Worm threads—Proportions of buttress threads—Measurement of thread tools—Thread tool angle measurements—Grinding the flat on thread tools—Screw-thread measurement—Screw-thread micrometer caliper—Measuring threads by the three-wire method—General formulas for three-wire measurements, for V threads, 60-degree American threads, for Acme threads, for Whitworth threads, etc.—Formulas for calculating the "measurement" when the P.D. is known—Correcting pitch diameter to micrometer reading—Three-wire measurement of American thread—Metric 60-degree threads—Formula for 55-degree threads—Wire sizes and constants for American, Metric, 55-degrees, Whitworth, and B.A. 47½-degree threads—Optical methods of measuring threads—Measuring American coarse threads—Thickness of plating in threads—Measuring 29-degree	

	PAGE
angle—Converting three-wire measurement to 29-degree thread pitch diameter—Wire sizes for measuring Brown and Sharpe 29-degree worm threads—Worm wheel hobs—Holding work and wires for three-wire method—Measuring internal threads—Cutting screw threads—Gears for screw cutting—Metric threads—Arrangement of lathe gears for screw cutting—Helix angle of screw threads—Multiple thread cutting—Double depth of thread—Face plate for multiple thread cutting—Cutting diametral pitch worms in the lathe—Lead gears for diametral pitch worms.	
SECTION II	
PIPE AND PIPE THREADS	90
American Standard pipe threads—Diameter of taper thread—Length of thread—Diagram showing notation of American Standard pipe thread (see Table 1)—Gages and methods of gaging—Master gage—Reference gage—Working gage—Sections showing reference and working gages—Gaging external and internal taper threads—Gage and working tolerances—Master gage tolerance—Manufacturing tolerances—Straight thread and its uses—Tolerances for reference gages—Dimensions of standard pipe—Dimensions of American Standard straight pipe thread—Drill sizes for American taper pipe taps for tapping without reaming—Brass tube sizes for chandelier work—Dimensions of tubing, joints and fittings for chandeliers—Dimensions of American Standard locknut thread—Pipe used in oil-well work—American Petroleum Institute Standard well casing—A.P.I. standard casing threads—A.P.I. standard drill pipe threads—Tolerances on gages for casing, drill pipe, and tubing—Hughes Acme thread tool joint—British Standard pipe threads—British pipe gages—Metric pipe threads—National (American) Standard fire-hose coupling thread—Standard hose couplings—Limiting dimensions for hose couplings, hydrant caps, and nipples—Limit gages for coupling and hydrant nipples.	
SECTION III	
DRILLING	118
Twist drills—A.S.A. common drill shanks—Names of drill point parts—Drill nomenclature—Shank terms—Body terms—Point terms—Drill-point grinding—Correct lips and clearance—Varying clearance angle at point—Practical way to get clearance—Nine types of useful drill points—Drilling speeds and feeds—Speeds for high-speed drills—Lubricants or cutting compounds—Speeds in automatic machines—Drilling troubles, causes and remedies—Types of twist drills and their uses—Cutting speeds of number-size drills—Drills for various purposes—Cutting speeds for fraction- and letter-size drills—Speeds and feeds for high-speed steel drills in various metals—Thrust loads on twist drills—Horse-power required—Grobet	

flat drills—Diameters and areas of number, letter, Metric, and fractional drills in order of size—Drilling on multiple-spindle machines—Drill sizes for taper pins—Speeds for tungsten-carbide drills—Lubricants for drilling—Simplified or preferred drill sizes—Tap drill sizes, American machine screw—Tap drills for uniform pitch thread sizes—British tap drills—Drills and reamers for dowel pins—Drill end lengths.

SECTION IV

REAMERS AND REAMING 154

British standard for reamers—Types of reamers—Arbors for shell reamers—Names of reamer parts—The reamer body—The reamer point—Reamer speeds, feeds, and lubricants—Sharpening reamers—Grinding point for entering hole—How a machine reamer cuts—Three forms of flutes—Rake of reamer teeth—Reamers for different metals—Grinding reamer clearance—Grinding clearance—Reaming speeds and feeds in screw machine—Suggested speeds for reaming.

SECTION V

TAPS AND TAPPING 170

Form of thread—Various taps and definitions—Screw thread terms and definitions—Marking taps with symbols—Multiple-thread taps and dies—American Standard thread series—Regular hand taps, formerly called "Standard"—Tolerances—Hand taps, cut thread and commercially ground (National form)—Hand taps, precision ground—American National machine screw thread limits—Threads on studs—Stud fits—Dimensions of pipe taps—Pipe tap tolerances—Combined pipe tap and drill—Mud or washout taps—Tapper taps—Chamfer on dies—Stud fits in cast iron and aluminum—Elgin watch screw taps—Waltham watch screw taps—Watchmakers' measurements—Tapping and threading speeds—Recommended face grinds for die chasers—Landis threading speeds.

SECTION VI

FILES AND WORK BENCHES 196

File characteristics—Definition of files—Tooth spacing of different file cuts—The saw-file group—The machinists' file group—Rasps and miscellaneous files—When a file cuts best—Rotary files—Work benches—Construction of benches and tool cabinets.

SECTION VII

BABBITTING, BRAZING, SOLDERING, AND WELDING 203

Rebabbetting bearings—Properties of white metal bearing alloys—Melting babbitt and pouring—Soldering—Fluxes for different metals—Cleaning and holding work—Soldering cast iron—Solders and fusible alloys—Melting points

of solder metal and fusible alloys—Brazing and hard soldering—Brazing band saws—Silver brazing—Oxyacetylene welding and cutting—Flame cutting—Guide for machine cutting—Hand cutting blowpipe—Hand welding blowpipe chart—Cutting with the arc—Speed of cutting plates and bars—Electric welding—Metallic arc welding—Carbon arc and shielded arc welding—Physical properties of welds—General suggestions on arc welding—Types of joints for arc welding—Arc welding cast iron—Length of fillet weld to replace rivets—Examples of welds—Welded jigs and fixtures—Metallizing or metal spraying—Lead burning—Spreading locomotive frames for welding—Welding locomotive frames by Thermit.

SECTION VIII

Shapes of gear teeth—Parts of gear teeth—Twelve types of gears—Methods of cutting or shaping gear teeth—Spiral bevel gears, Hypoid gears—Formulas for gearing—Corresponding diametral and circular pitches—Standard composite gear-tooth systems—Full-depth tooth proportions for spur gears, $14\frac{1}{2}$ degrees—20-degree stub involute system—Constants for chordal pitch and radius of spur gears—Table of tooth parts—Laying out spur-gear blanks—Actual size of diametral pitches—Pressure angles—Stub tooth gears—Interference in involute gearing—Long and short addendum teeth—Pitch diameters of standard gearing—Turning and cutting gear blanks—Brown and Sharpe involute gear-tooth cutters—Dimensions of gears by metric pitch—Measuring spur gears by use of pins—Table of dimensions for miter gears—Bevel gears—Laying out bevel gear blanks—Proportions of miter and bevel gears—Setting cutters for bevel gears—Obtaining setover for cutting bevel gears—Selecting the cutter for bevel gears—Hobbing method of cutting gear teeth—How teeth are generated—Angular setting of hob—The gearing in a hobbing machine—Hobbing spur gears—Hobbing helical gears, non-differential method—Hobbing helical gears, differential method—Differential versus non-differential hobbing—Hobs for spur and helical gears—Speeds and feeds for gears—Hobbing worm gears, infeed and tangential methods—Hobs for worm gears—Other applications of hobbing method—Helical gears—Calculation of 45-degree helical gears—Diagram of 45-degree helical gears—Figuring helical gears—Selecting secants and trial numbers of teeth—Real pitches for circular-pitch helical gears—Spur-gear cutters for helical gears—Finding helix angle—Helical-gear table—Testing and adjusting spiral bevel-gear drives—Effect of mounting on tooth—Tolerances in gearing—Grinding, shaving, burnishing, lapping gear teeth—Spline hobbing—Tolerances for worm gearing—Nonmetallic gears and pinions

—Preferred pitch and bore sizes—Keyway stresses—
 A.G.M.A. formula for computing the horse-power of non-metallic gears—Threads of worms—Formulas for worms—
 Formulas for standard worm gears—A.G.M.A. recommended practice for design of worm gearing—Proportions of worm threads to run in worm wheels—Gashing angles for worm wheels—Link-Belt silent-chain data—Morse chain drives—Standard roller-chain and sprocket dimensions—Cutters for block-chain and roller-chain sprockets—
 Maximum sprocket speeds and chain velocities—Moving-picture projector sprockets—American standard for 8-, 16-, and 35-millimeter film-projector sprockets—
 Rack teeth.

SECTION IX

TURNING AND BORING 321

Single-point tools—Tool elements—Definitions of all classes of tools—Types of tools—Cutting angles and rakes—
 Tool angles—Working angles—General Terms—
 Constants for cutting times—Rotary cutting speeds—Figuring turning speeds—Lathe-tool tests—Accurate tool setting with compound rest—Cutting lubricants—Cutting-speed conversion table—Lubricants for threading various materials—Cutting fluid application chart—Estimating machining time—Cast iron—Cast steel—Malleable iron—Forgings—Bar stock—Steel alloys—Yellow brass—
 Bronzes—Aluminum—Boring and drilling in the Ford plant—Standard shaper time tables for all cuts—Shaper setup time table—Turret lathe speeds and feeds—Machining of nonferrous metals and other materials—Tools for high-nickel alloys—Automatic screw-machine work—
 Speeds and feeds for automatic screw machining of Grade R monel—Lathe and planer work on monel—Turning speeds for monel—Welding, drawing, and punching monel—
 Spinning—Tools for Nichrome—Machining aluminum and its alloys—Speeds, feeds, and lubricants for aluminum—
 Cutting tools for aluminum (lathe, planer, miller, threading, saws, etc.)—Machining nonmetallic materials—
 Formica—Micarta—Textolite—Hard rubber—Fiber—
 Stellite J-metal—Cemented carbide tools—Chromium-plated tools—Diamond turning tools—Tools with inserted diamond tips—General data on diamond tools—Tungsten carbide tools—Grinding carbide tools—Silicon carbide wheels for carbide grinding—Sharpening on diamond wheels—Stainless steel—Sizes of centers in arbors—
 Metal removed at various cuts—Turning tapers between centers—Spinning.

SECTION X

MILLING MACHINE SPEEDS AND FEEDS. 375
 Chip taken by cutter—Brown and Sharpe data—Finish of the work—Clearance on Cutters—Coarse-tooth cutters—

Horse-power required by milling cutters—Strength and cutting life—Chatter—Finish—Plain mills—Helical slabbing cutters—Face mills—Saws—End mills—Milling-cutter dimensions—Side mills—Staggered-tooth side mill—Details of all cutters including, plain, helical, side, saw, angle, reamer and tap fluting; end, T-slot, shell-end, concave and convex, and corner rounding—Sprocket-wheel cutter table—Keys and keyways for milling cutters and arbors—Form and profile cutters—Climb milling—Using protractor to get angle—Average peripheral speeds for milling—Speed of cutters—Milling cast iron and malleable iron—Milling steel—Stellite cutters—Milling magnesium—Feeds of milling cutters—Cutter failure—Cutting helices on universal miller—Table of change gears, approximate angles, and leads for cutting helices—Estimating milling time—Approach of cutters for different mills—Milling heart-shaped cams—Milling cams by gearing up dividing head—Tables of settings for milling screw-machine cams—Tables of gearing for cutting worm and helical gears—Plain and differential indexing on Brown and Sharpe milling machines—General principles of differential indexing—Formula for finding gear ratio—Application of the formula—Cutting racks on Cincinnati milling machines—Table for gears for dividing head for all numbers up to 730—Wide-range divider—Other dividing heads—Indexing with astronomical dividing attachment—Metal saw teeth—Cutting speeds for cold saw cutting-off machines—Metal-cutting saws—Hack saws (Starrett)—Screw-slottedting cutters—Cutting speeds for high-speed saws—Circular saws for brass, copper, and other soft materials—Inserted-tooth saws—Discs for cutting metals—Use of band and hack saws—Disston metal-cutting band saws (specifications for various materials)—Holding work for cutting-off saws—Grinding milling cutters—Sharpening end mills—Clearance angles for cutters—Angles on helical mills—Sharpening staggered-tooth cutters.

SECTION XI

Dressing and truing—Diamonds for grinding wheels—Setting the diamonds—Use of coolants—General suggestions—Factors affecting grinding-wheel selection: (1) Material to be ground—(2) Amount of material to be removed—(3) Arc of contact—(4) Type of machine—Influential variable factors: (1) Wheel speed—(2) Work speed—(3) Condition of grinding machine—(4) Personal factor or skill of the workman—Grinding wheel recommendations—Speed tables, rules for surface speeds, etc.—Types of wheels—Standard faces of grinding wheels—R.P.M. of wheels corresponding to feet per minute surface speeds—Grinding-wheel recommendations—Grinding allowances for various diameters and lengths—Limit gage sizes for lathe work to be ground—Magnetic chucks—Hints for using magnetic chucks—Permanent magnet chucks—Centerless grinding—Through feed—In feed—End feed—Internal grinding—Recommended stock conditions for internal grinding—Importance of truing wheels—Wheel width and diameter—Table of wheels for given sizes of holes—Cutting-off wheels—Diamond grinding wheels—Polishing—Flexible- vs. solid-wheel grinding—Types of wheels and belts—Bufs—Importance of proper grades—Selection of proper size—Handling and preparing glue—Sand and shot blasting—Ball burnishing—Approximate number of balls per pound—Oilstones and their uses—Artificial oilstones—Oilstone shapes—How to care for oilstones—Honing—Honing cylindrical bores—Recommended honing speeds—Lapping—Hand lapping—Lapping flat surfaces—Laps for holes—How to do good lapping—Ring gage and other work—A lap for plugs—Adjustable step lap for plug gages—Diamond laps—Other abrasives for lapping—Diamond powder in the machine shop—Tools for preparing surface laps—Tests of lapping—Good lapping combinations—Machine lapping—Proportions of parts for lapping—Lapping lubricants—Super-finish—Superfinishing piston—Ratio of reciprocations per minute to revolutions per minute.

SECTION XII

SCREW-MACHINE TOOLS, SPEEDS, AND FEEDS. 542

Box tools—Tangent tools—Hollow mills—Hollow-mill proportions—Dies and taps—Spring-die sizes—Boring work for threading—Allowances for threading—Tap length and number of lands—Forming tools—Getting tool diameters at different points—Dovetail tool depths—Making forming tools—Circular tool for conical points—Finding diameter of circular forming tools—Speeds and feeds for screw-machine work—Threading speeds for taps and dies—Cutting speeds and feeds for standard tools—Bolt cutters—Threading speeds in feet per minute for pipe—Threading speeds for coarse and fine threads—Surface speed and revolutions per minute—Threading speeds for

cast and malleable iron—Speeds for threading brass—Threading speeds for high-speed steel chasers on various materials—Speed of reamers in screw-machine work—Angles and thickness of circular cut-off tools—Tolerances on screw-machine work—Screw-machine limits—Grinding allowances for bronze bushings—Standard holes (reamed)—Estimating screw-machine work—Standards for rotating air cylinders and adapters—Steps in screw-machine cam design—Laying out cams—American Standard circular and dovetail forming tool blanks—Circular tool blanks—Machine classification—Dovetail tool blanks—Dimensions of circular tools with threaded holes and counter-bored holes—Dimensions of dovetail forming tools.

SECTION XIII

PUNCH PRESS TOOLS.	588
----------------------------	-----

Finding blanks for drawn work and formed work—Methods of finding diameters of cylindrical shells, flanged shells, taper shells, flanged taper shells,—Rules for finding dimensions of circles and squares—Formulas for shell-blank diameters—Areas of various figures—Table for areas of segments—Tables of blank diameters for shells—Area and weight chart for steel stampings—Laying out bending dies—Constants for angle bends—Punch and die clearance for accurate work—Clearances for punches and dies for different thicknesses of metal—Clearances for punches and dies for boiler work—Piercing punches of various types—Pilot for punches—Allowances for shaving—Allowances for double shaves—Pressures for punching brass and steel—Pressures for shearing brass and steel—Effect of sheared tools—Die clearance or relief—Clearance between blanking punch and die—Die clearance for hot flanging tools—Double-action press dies—Double-acting subpress—Typical standard die sets—Classification sheets for Class AA, Class A, Class B, and Class C dies—Standardizing names for die-set parts—Stock stops for dies—Disappearing gage pins—Compound die construction—U.S. Navy standard punches—Approximate pressures required for punching and shearing—Average ultimate strength of materials—Influence of stock width on scrap—Rate of production—Lubricants for press work—Drawing monel metal and nickel—Bending sheet steel—Various kinds of bends—Bend radii for steel tubing—Square and reverse bends—Bending without mandrels—Handy sheet-metal tables—Tables for containers, cups, etc.—Bright coke tinplate—Charcoal tinplate—Terneplate.

SECTION XIV

BROACHES AND BROACHING.	641
---------------------------------	-----

Broaching a square hole—How chips are divided—Section of broached hole—Broach for internal gears—Sectional

broach construction—Tooth spacing—Broaching round holes—Push broaches for round holes—Saving time in broaching square holes—Square broaches—Burnishing bars—Center relief for square holes—Standard dimensions of round-cornered square holes—Broaching machines—Broaching speeds—Teeth for broaches.

SECTION XV

Standard bolts and nuts—Slotted-head machine screws, capscrews and wood screws—Capscrew lengths—Thread lengths—Screw points—American Phillips machine screws—Stud bolts—Tap-drill sizes and dimensions of machine-screw heads—Hanger bolts—Standard sizes of wrench-head bolts and nuts and wrench openings—Square and hexagonal regular bolt heads—Capscrew heads—Setscrew heads—Square and hexagonal nuts—Open-end wrench openings—Screws, bolts, and nuts, National fine (S.A.E.) standard—Self-tapping screws—British screw heads—American Standard socket screws—Hole sizes for Parker-Kalon self-tapping screws—Rod end pins—Cotter pins S.A.E. standard—Standard wood screws—Coach or lag screws—American Screw Company machine screws—Eyebolts—Harvey grip bolts—Washers—Length of rivets for different thicknesses of metal—British Standard bolts, nuts, setscrews, split pins, and studs.

SECTION XVI

The vernier and how to read it—Reading the micrometer—The ten-thousandth micrometer—Measuring three fluted tools with the micrometer—Use of calipers—Side play of calipers in boring holes larger than a piece of known diameter—Allowing for running and driving fits—Interchangeable manufacture—Standard or basic-hole practice—Bearing clearance and press fits by rock of the pin gage—Diagram of tolerances and allowances—Four common fits—The standard inch—Micro-inch and micron—Measuring with light waves—The principle of the wedge of air—Degrees of flatness error—Meaning of the interference bands—Testing flatness—Checking gage blocks—Applying the principle of the wedge—The light-wave micrometer—Fundamentals—Direction of tolerance on gages—Definitions—Types of gages—Ring gages—Plug gage—Receiving gage—Indicating gage—Snap gage—Caliper gage—Standard sizes—Nominal size—Basic size—Allowance tolerance—Neutral zone—Limits—Master gage—Inspection gages—Working gages—Classification of fits—Loose fit (Class 1), large allowance—Free fit (Class 2), liberal allowance—Medium fit (Class 3), medium allowance—Snug fit (Class 4), zero allowance—Wringing

fit (Class 5), zero to negative allowance—Tight fit (Class 6), slight negative allowance—Medium force fit (Class 7), negative allowance—Heavy force and shrink fit (Class 8), considerable negative allowance—Standard fits applied to interchangeable manufacture—Interchangeable assembly—Selective assembly—Explanatory notes—Formulas for recommended allowances and tolerances—International standards—Jig bushings—A.S.M.E. specifications for plain limit gages—Standard gages—Wear and tolerance of gages—Tolerances for thread gages—Allowances and tolerances for international metal fits—National Screw Thread Commission's product limits and inspection-gage tolerances on pitch diameter—Snap gages for length—Grinding limits for cylindrical pieces—British Engineering Standards Association—British Standard limits and fits—Automatic and air gaging—Press and shrink fits—Making press fits—Taper fits—Length of press and shrink fits on taper—Expansion fits—Linear change in metals for specified temperature changes (approximate)—Allowances or tolerances for sliding fits.

SECTION XVII

Measuring tapers—An accurate taper gage—Formulas for use in connection with taper gage—Application of formulas—To find center distance between discs—To find disc diameters—To find taper per foot—To find width of opening at ends—Standard self-holding tapers—Taper series, basic dimensions—Torque drive with shank retained by friction—Torque drive with shank retained by key—Key drive with shank retained by key—Key drive with shank retained by draw bolt—The Jarno taper—Table of plug gages—Ring gages—Morse tapers—Brown & Sharpe tapers—Other tapers—Taper reamers and pins—Brown & Sharpe taper pins—Taper of plug cocks—To select taper pins for shaft—Standard taper pins used by U. S. Ordnance Department—Table for use in computing tapers—Solid and split taper pins, British Standard—Table for dimensioning dovetail slides and gibbs—Measuring external and internal dovetails—Tool for laying out angles accurately—The sine bar—Use of the sine bar table—Attachment for use with the sine bar.

SECTION XVIII

Standard jig bushings—Hand wheels—Machine handles, cranks, and knobs—Fitting ball and roller bearings—Minimum spacing of hexagon nuts for wrench clearance—Counterbores with inserted pilots—Tolerances and fits for New Departure Radax bearing mountings—Bower roller bearing tolerances and fitting practices—Integral right-angled triangles—Table of chords—Table for spacing holes

in circle—Laying out angles—Table of sides, angles, and sines—Lengths of circular arcs—Chordal dimensions—Coordinates for the jig borer—American drawing-room practice—Third-angle projection—Conventional lines—Sections—Cross-hatching—Dimensioning drawings—Standard lathe spindle noses—Standard turret lathe noses—Standard milling-machine spindles and arbors—Standard T slots for machine tools—Dimensions of T-slot cutters—Standard T nuts and tongues—Toolholder shanks and tool-post openings—Toolholder bits and shanks—Cam clamp for jigs—Standard shafting and stock keys, plain and gib head—Cold-finished shafting—A.G.M.A. keyways for holes in gears—Woodruff keys and key-slot data—Kennedy key—The Nordberg key—Splined shafts for machine use—Formula for finding root width of splineways—Four, six, ten, and sixteen spline fittings—Involute splines—Tapered splined shafts—Serrated shaft fittings—Taper fittings and plain or slotted nuts—Adapter for multiple-spindle drilling heads—Proportions of square shafts and fit allowances—Actual cutting speed of planer in feet per minute—Allowance for boltheads and upsets—Table of board feet—Estimating lumber for a pattern—Weight of fillets—Laying out a square corner—Volume of spheres—Spherical segments—Capacity of round vertical tanks in U. S. gallons—General factors of safety—Shearing strength of steel pins.

SECTION XIX

WIRE GAGES AND STOCK WEIGHTS. 940

Twist drill and steel wire gage sizes—Decimal equivalents of various gages—Wire and drill sizes arranged consecutively—Stubs' steel wire sizes and weights—Music wire sizes—Weight and approximate thickness of sheet steel U. S. Standard gage—Weights of aluminum, brass and copper plates—Weight per square inch of various materials—Weights of steel and wrought iron plates, etc.—Weight of round bars of carbon and high-speed steel in pounds per linear inch—Weight of iron, brass, and copper wire—Weights of steel, iron, brass, aluminum, copper bars per foot—Weight of flat stock—Weight of tubing—Thickness table for copper sheets—Gage and weight of zinc sheet—Tolerance on commercial materials—Thickness and weight tolerances—Tolerances on shafting, steel balls, screw stock, cold-drawn steel, and other materials.

SECTION XX

HORSE-POWER, BELTS, AND SHAFTING 968

Horse-power—Steam-engine horse-power—Electrical horse-power—Gas-engine horse-power—S.A.E. (A.L.A.M.) horse-power rating—Table of piston-ring data—Horse-power ratings for flat leather belts—Horse-power per inch of belt width—Thickness specifications for

flat leather belting—Texrope drive—Belt fastenings—Belt hooks—Lacing belts—Aligning shafting by a steel wire—Speed of shafting—Horse-power of shafting—Speeds of pulleys and gears—Table of circumferential speeds—Selecting motors for machine tools—Alternating-current motors—Squirrel-cage high-reactance motors—Squirrel-cage high-resistance rotor motors—Wound-round motors—Variable and multispeed motors—Direct-current motors—Guide to type of motor—Motors for machine tools—Types and sizes—Horse-power required to remove metal on planers—Individual motor vs. group drives—Power required for planing-mill equipment—Power required for punching and shearing—Power required to remove metal—Horsepower to drive machines—Speed for wood turning—Cooling hot bearings—Proper motor selection for various machines—Foundation bolts and washers.

SECTION XXI

METALS AND OTHER MATERIALS. 1003

Heat treatment of steel—Terms relating to heat-treatment operations as adopted by a Joint Committee of the A.S.T.M., S.A.E., and A.S.S.T.—Heat treatment—Quenching—Hardening—Annealing—Normalizing—Patenting—Spheroidizing—Tempering—Malleabilizing—Graphitizing—Carburizing—Case hardening—Cyaniding—Methods of heating—Heating in liquids—Gas and oil as fuel—Annealing—The hardening bath—Grades and uses of carbon steels—Alloy steels—Comparative properties of case-hardening and hard-tempering steels—Chemical compositions of S.A.E. alloy steels—Characteristics of tool steel—Recommended heat treatment of S.A.E. steels—The Rockwell test—Scleroscope reading—Scleroscope hardness scale for various metals—Fundamental hardening rules—Frequent faults in hardening—Natural fracture of various steels—Time required to heat Monel metal and nickel to forging temperatures—Furnace atmosphere—Quenching baths—Oil baths—Temperature conversion tables—Fixed points for thermometer calibration commonly used in the heat-treating department—Air quenching—Drawing-bath mixtures—Other baths for drawing carbon steels—Uses of carbon tool steels—Heat treatment of carbon tool steels—Tempering table—High-speed steels—Alloy-steel development—Functions of different elements—Critical temperatures of steel—Calescent and recalescent temperatures—Colors of heated steel in diffused daylight—English suggestion on hardening high-speed steel—Magnetic superheating—Cloudburst hardening—Stellite—Carpenter stainless steels—Cobalt tools—Typical heat treatment of stainless steels—Annealing temperatures—Heat treatment of spring steel—Carburizing—The carburizing materials—Automatic carburizing—Chapmanizing—Colors in case hardening—Use of bone and charcoal—Car-

burizing large flat work—Sizes of granulated bone—Nitriding steel—Case-hardening cast iron—Selecting proper temperature for quenching—Testing pyrometers—Automotive steels—The S.A.E. numbering system—Summary of S.A.E. steels and their uses—Analysis and properties of steels used by the Ford industries—Tough steels for truck service—Machine tool steels—Color code for marking steel bars—Spark method of determining grades of iron and steel—Tests of hardness—File hardness test—Monotron hardness test—Vickers diamond pyramid hardness test—The Brinell test—Magnaflux method of detecting cracks—Hardness strength of steel—Comparison table for hardness numerals—U. S. Army browning solution—Armory etching acid—Hardening cast iron—How to nitro-blue steel—Quenching or cooling steel—Arsenal “hot-dip” process for tinning—Tinning brass parts—Etching fluid—Rust remover—Marking on steel—Pickling iron and its alloys—Acid strength and temperature—Copper alloys and their composition—Navy Department specifications for journal bronze (composition H)—Brass terminology—High-silicon bronzes—Uses of S.A.E. brass and bronze alloys—Tempers of sheet brass—Tolerances on brass and copper—Uses and tempers of wrought-copper alloys—Leaded brasses—Tinned brasses—Nickel silvers—Bismuth alloy—Various alloys—Alloys for coinage—Babbitt, bell metal, and other alloys—Properties of metals—Metals used in die casting (zinc base; lead base; tin base; aluminum base) die-casting dimensional limits—Draft limits, hole limits, numbers of threads in die casting—Brass die castings—Alcumite—Aluminum—Ascoloy—Bakelite—Calite—Duralumin—Composition, annealing, heat treatment and machining of Duralumin—Everdur metal No. 50—Genelite—Monel metal—Pickling, welding, drawing, punching, spinning, Monel—Machining bakelite—Tapping laminated plastics—Some uses of lead—Lead burning.

SECTION XXII

MACHINE FORGINGS 1084

Steam hammers—Hammer ratings—Drop forgings—Draft in drop-forging dies—Draft dimensions—Allowance in thousandths of an inch at face of die for standard draft angles—Formula for draft allowance—Making types—Mean draft of spherical end of cylindrical type—Die-sinking cutter at work—Drop-forging data—Parting line of drop-forged lever and other details—Swaging—Forging hammers—Factors governing selection of hammers—Die draft equivalents—Tolerances for forgings—Thickness tolerances—Shrinkage and wear tolerances—Mismatching tolerances—Draft-angle tolerances—Quantity tolerances—Drop-forging insert die—How die inserts are made—Forging heats.

SECTION XXIII

KNOTS AND SLINGS.	1097
---------------------------	------

Knots and slings for handling work—Simple or overhand knot—Double-overhand knot—Figure-8 knot (Flemish)—Stevedore knot—Boat knot (Marlinspike hitch)—Slip knot (simple running knot)—Tomfool knot (double running knot)—Flemish loop—Bowline—Bowline II—Running bowline—Bowline on a bight—Open-hand loop knot and figure 8-loop knot—Man-harness knot—Packer's knot—Blackwall hitch—Modified fisherman's bends—Fisherman's bend—Lark's head—Half hitch—Timber hitch—Clove hitch—Rolling hitch—Safe loads for eye-bolts and for ropes and chains—Safe loads in pounds for double-chain sling.

SECTION XXIV

GENERAL REFERENCE TABLES.	1104
-----------------------------------	------

Common weights and measures—Weight of a cubic foot of substances—Angles of arc—The Metric system—Metric and English conversion tables—Fractions of an inch, decimals and millimeters—Equivalents of compound units (metric to American)—Decimal equivalents of fractions of a millimeter—Equivalents of English inches in millimeters—Comparison of standard linear units—Decimal equivalents of fractions of an inch—Water-conversion factors—Convenient multipliers—Table of prime-number fractions—Squares of numbers from 0 to $7\frac{3}{4}$ by sixty-fourths—Squares, cubes, and roots of fractions—Squares, cubes, and roots of numbers from 1 to 1000—Areas and circumferences of circles—Circumferences and diameters of circles—Reciprocals of numbers to 1,000.

SECTION XXV

AUTOMOTIVE DATA.	1161
--------------------------	------

Automobile engine pistons—Aluminum alloy—Ring fits—Machining—Piston pin holes—Gap or clearance between ends—Cast iron—Clearance in cylinder bore—Standard oversize pistons and rings—Clearances and tolerances of airplane engine parts: Connecting rods, small rods (pin diameters), crankshaft bearings—Gear backlash—Piston clearance in cylinder—Piston ring in groove—Valve stem in guide—Valve tappet clearance—Fits and tolerances of Ford 85-horse-power engine—Cylinder-block bore—Piston diameter—Main bearings—Connecting-rod bearings bore—Piston and wrist pin—Piston rings—Total clearance between connecting-rod bearing bore and crankshaft bearing.

SECTION XXVI

RAILROAD SHOP DATA	1166
------------------------------	------

Standard classification of repairs to locomotives and tenders—Boring and turning tires—Tire-turning data—

Tire-boring tools—General instructions for shimming locomotive-wheel centers—Wear allowance for different types of tires—Standard plain tire—Chart for tire-turning speeds—Chart for turning crankpins—Minimum thickness for driving-wheel and trailer tires—Shrinkage of tires—Heating tires for shrinking—Wheel-measuring tape—A.A.R. wheel-circumference measure—Press fit practice—Pressures for mounting axles and crankpins—Minimum and maximum pressures—Crankpin turning—Fits used in locomotive repair work—Taper fits—Taper threads for locomotive work—Machining rod ends—Wear allowances, tolerances, and fits—Crown-brass details—Rebuilding hub liners on wheels—Limits of wear on various locomotive parts—Uses of steels in railroad work—Bronze bearings for locomotives—Chemical properties and tests—Carbon-steel axles for cars and locomotive tenders—Trailers-truck axles—Standard A.A.R. crankpin—A.A.R. dimensions of axles—Standard allowance for different kinds of fits—Threads for locomotive injector couplings.

SECTION XXVII

Angle constants—Simple solution of right-angle triangle problems for mechanics—Laying out angles—Locating hole centers and other tool-room problems—Use of the trigonometry tables for practical work—Rules and Formulas for all classes of angle solutions—Testing angles with plugs—Right-angle triangles—Calculating plug diameters—Laying out regular polygons—Finding the diameter of work without the center—Flat-square method—Formulas for this work—Properties of regular figures—The circle—Triangle—The square—The hexagon—The octagon—Tables of sines and cosines; tangents and cotangents; secants and cosecants.

SECTION XXVIII

DICTIONARY OF SHOP TERMS. 1254

INDEX 1320