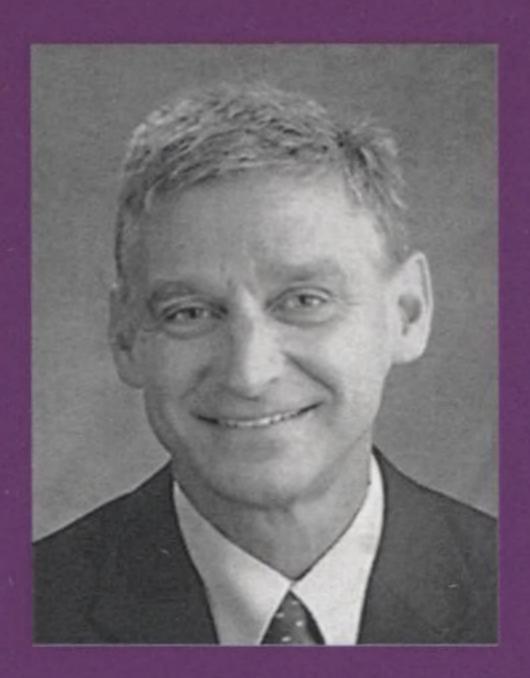
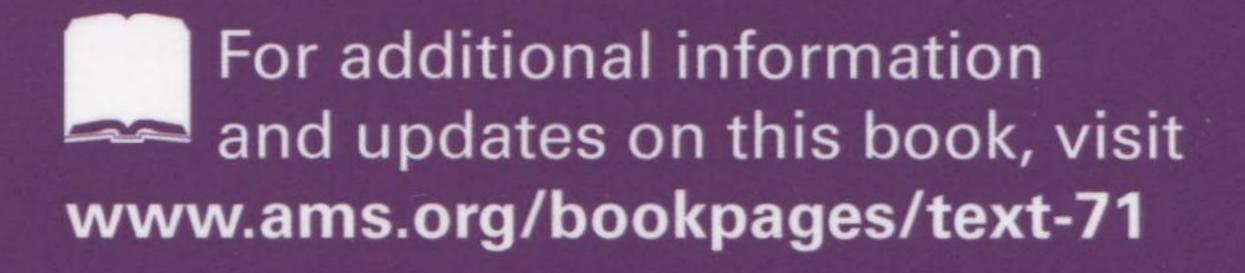
AMS/MAA TEXTBOOKS

The book introduces complex analysis as a natural extension of the calculus of real-valued functions. The mechanism for doing so is the *extension theorem*, which states that any real analytic function extends to an analytic function defined in a region of the complex plane. The connection to real functions and calculus is then natural. The introduction to analytic functions feels intuitive and their fundamental properties are covered quickly. As a result, the book allows a surprisingly large coverage of the classical analysis topics of analytic and meromorphic functions, harmonic functions, contour integrals



and series representations, conformal maps, and the Dirichlet problem. It also introduces several more advanced notions, including the Riemann hypothesis and operator theory, in a manner accessible to undergraduates. The last chapter describes bounded linear operators on Hilbert and Banach spaces, including the spectral theory of compact operators, in a way that also provides an excellent review of important topics in linear algebra and provides a pathway to undergraduate research topics in analysis.

The book allows flexible use in a single semester, full-year, or capstone course in complex analysis. Prerequisites can range from only multivariate calculus to a transition course or to linear algebra or real analysis. There are over one thousand exercises of a variety of types and levels. Every chapter contains an essay describing a part of the history of the subject and at least one connected collection of exercises that together comprise a project-level exploration.



Contents

Preface	ix
1 Analytic Functions and the Derivative	1
1.1 The Complex Derivative	3
1.2 Power Series and the Extension Theorem	20
1.3 Multivalued Functions and Riemann Surfaces	44
1.4 The Cauchy-Riemann Equations and Harmonic Functions	67
1.5 Analytic Continuation	79
Notes for Chapter 1	86
2 Complex Integration	93
2.1 Complex Line Integrals	94
2.2 The Cauchy-Goursat Theorem	112
2.3 Cauchy's Integral Theorem	121
2.4 Top Ten Facts from Cauchy's Integral Theorem	129
Notes for Chapter 2	153
3 Non-Entire Functions	155
3.1 Singularities	156
3.2 Laurent Series	168
3.3 Cauchy's Residue Theorem and the Argument Principle	186
3.4 Applications of the Residue Theorem	197
Notes for Chapter 3	213
4 Solving the Dirichlet Problem	215
4.1 Conformal Maps	217
4.2 Solutions via Streamlines and Equipotentials	231
4.3 Solutions via Green's Functions	245
4.4 Solutions via an Integral Representation	254
Notes for Chapter 4	265
5 Further Topics and Famous Discoveries	269
5.1 Integral Transforms	269
5.2 Analytic Number Theory	284
5.3 The Riemann Hypothesis	293
5.4 Generalizing the Fundamental Theorem of Algebra	307
Notes for Chapter 5	323

viii	Contents
6 Linear Algebra and Operator Theory	327
6.1 Bounded Linear Operators on a Hilbert Space	332
6.2 The Study of Finite-Rank Operators: Linear Algebra	350
6.3 Banach Spaces and Compact Operators	367
6.4 Open Research Questions	384
Notes for Chapter 6	389
Acknowledgments and Credits	395
Solutions to Odd Exercises	399
Bibliography	423
Index	431