

Contents

Preface	vii
Tetsuro Miyakawa (1948–2009)	ix
Part 1. The rugosity effect	
DORIN BUCUR	1
Chapter 1. Some classical examples	5
1. Introduction	5
2. The example of Cioranescu and Murat: a strange term coming from somewhere else	5
3. Babuška's paradox	6
4. The Courant–Hilbert example for the Neumann–Laplacian spectrum	8
5. The rugosity effect	8
Chapter 2. Variational analysis of the rugosity effect	11
1. Scalar elliptic equations with Dirichlet boundary conditions	11
2. The rugosity effect in fluid dynamics	16
Bibliography	23
Part 2. Nonlinear evolution equations with anomalous diffusion	
GRZEGORZ KARCH	25
Chapter 1. Lévy operator	29
1. Probabilistic motivations – Wiener and Lévy processes	29
2. Convolution semigroup of measures and Lévy operator	31
3. Fractional Laplacian	35
4. Maximum principle	36
5. Integration by parts and the Lévy operator	39
Chapter 2. Fractal Burgers equation	45
1. Statement of the problem	45
2. Viscous conservation laws and rarefaction waves	46
3. Existence of solutions	47
4. Decay estimates	48
5. Convergence toward rarefaction waves for $\alpha \in (1, 2)$	49
6. Self-similar solution for $\alpha = 1$	50
7. Linear asymptotics for $0 < \alpha < 1$	51

8. Probabilistic summary	52
Chapter 3. Fractal Hamilton–Jacobi–KPZ equations	53
1. Kardar, Parisi & Zhang and Lévy operators	53
2. Assumptions and preliminary results	54
3. Large time asymptotics – the deposition case	56
4. Large time asymptotics – the evaporation case	58
Chapter 4. Other equations with Lévy operator	59
1. Lévy conservation laws	59
2. Nonlocal equation in dislocation dynamics	61
Bibliography	65
Part 3. On a continuous deconvolution equation	
ROGER LEWANDOWSKI	69
Chapter 1. Introduction and main facts	73
1. General orientation	73
2. Towards the models	74
3. Approximate deconvolution models	75
4. The deconvolution equation and outline of the remainder	76
Chapter 2. Mathematical tools	79
1. General background	79
2. Basic Helmholtz filtration	80
Chapter 3. From discrete to continuous deconvolution operator	83
1. The van Cittert algorithm	83
2. The continuous deconvolution equation	84
3. Various properties of the deconvolution equation	85
4. An additional convergence result	86
Chapter 4. Application to the Navier–Stokes equations	89
1. Dissipative solutions to the Navier–Stokes equations	89
2. The deconvolution model	91
Bibliography	101
Part 4. Rough boundaries and wall laws	
ANDRO MIKELIĆ	103
Chapter 1. Rough boundaries and wall laws	107
1. Introduction	107
2. Wall law for Poisson’s equation with the homogeneous Dirichlet condition at the rough boundary	108
3. Wall laws for the Stokes and Navier–Stokes equations	120
4. Rough boundaries and drag minimization	129
Bibliography	131

Part 5. Hyperbolic problems with characteristic boundary
PAOLO SECCHI, ALESSANDRO MORANDO, PAOLA TREBESCHI

135

Chapter 1. Introduction	139
1. Characteristic IBVP's of symmetric hyperbolic systems	139
2. Known results	142
3. Characteristic free boundary problems	143
Chapter 2. Compressible vortex sheets	149
1. The nonlinear equations in a fixed domain	152
2. The L^2 energy estimate for the linearized problem	154
3. Proof of the L^2 -energy estimate	156
4. Tame estimate in Sobolev norms	158
5. The Nash–Moser iterative scheme	160
Chapter 3. An example of loss of normal regularity	167
1. A toy model	167
2. Two for one	169
3. Modified toy model	171
Chapter 4. Regularity for characteristic symmetric IBVP's	175
1. Problem of regularity and main result	175
2. Function spaces	178
3. The scheme of the proof of Theorem 4.1	180
Bibliography	191
Appendix A. The Projector P	195
Appendix B. Kreiss-Lopatinskii condition	197
Appendix C. Structural assumptions for well-posedness	199