Contents

Intr	roduction	ix
1.	General principles 1.1 Low sample size reduces statistical power 1.1.1 The statistical power of your study 1.1.2 Improving the power of your study 1.1.3 Interpreting your study in the light of low power 1.2 A small sample is more likely to be unrepresentative 1.3 Summary statistics can be less helpful 1.4 Effect sizes might be inflated 1.5 Meta-analysis may be more important	1 1 3 7 8 9 9
2.	Note on permutation and bootstrap tests 2.1 Permutation tests 2.2 Bootstrap tests	11 12 15
3.	A single sample of continuous data 3.1 Paired t test 3.2 Sign test 3.3 Wilcoxon signed rank test 3.4 Confidence intervals 3.5 Bootstrap tests and confidence intervals	19 20 23 25 26 29
4.	Comparing continuous data across levels of one or more factors 4.1 Two-sample comparisons 4.1.1 Tests for the location-shift problem 4.1.2 Unequal variances 4.1.3 Tests for a difference in variability 4.1.4 General alternative 4.2 More than two samples 4.3 Trend tests 4.4 More complex designs 4.4.1 Comparing continuous data across levels of two or more factors 4.4.2 Continuous data across factors and covariates	32 32 39 45 45 49 54 56 56
5.	Correlation and regression 5.1 Correlation 5.2 Regression	59 59 63

6.	Binomial data	71
	6.1 A single sample of binomial data	71
	6.2 Two samples: confidence intervals for binomial variables	73
	6.2.1 Difference between proportions	74
	6.2.2 Relative risk (also called risk ratio)	75
	6.2.3 Odds ratio	76
	6.2.4 The number needed to treat (NNT)	78
	6.3 Testing the null hypothesis of identical proportions	78
	6.3.1 Comparing two proportions	78
	6.3.2 Comparing more than two proportions	82
	6.4 Paired binomial data	83
	6.5 Association and agreement in paired binomial data	86
	6.6 Logistic regression	87
7.	Multinomial data	93
	7.1 A single sample over unordered levels of one factor	93
	7.2 A single sample over ordered levels of one factor	97
	7.3 Comparing two or more samples over ordered levels of one factor	100
	7.4 Generalising to r samples over a factor with c unordered levels	102
	7.5 An rxc contingency table where both factors are ordered	104
8.	Sequential analysis and adaptive designs	105
	8.1 Group-sequential designs	105
	8.2 Adaptive designs	109
0		
9.	Meta-analysis	114
10.	Multiple testing	122
11	Bayesian analysis	127
11.	DayColair allaryolo	12/
Bibliography		132
Ind		140

, PE