Contents

Pr	reface			page xix
Ac	cknowl	ledgments		xxi
1	The Fa		al Physics	1
	1.1	Problems	Problem 10 Time Involution of the Assinguabetide	1
		Problem 1	Black-Body Radiation Spectrum	1
			Compton Scattering for an Electron in Motion in the Lab Frame	5
			The Thomson Model of the Atom and Rutherford's Experiment	9
			The Stability Problem for the Rutherford Model of the Atom	11
			Bohr's Calculation of the Energy Spectrum of the Hydrogen Atom	12
		Problem 6	The Bohr-Sommerfeld Quantization Rule and the Harmonic	
			Oscillator Energy Spectrum	12
		Problem 7	An Application of the Bohr-Sommerfeld Quantization Rule	
			to the Hydrogen Atom	14
		Problem 8	Heat Capacity of Solids	15
2	Wave	-Particle Duali	ty and Wave Mechanics	18
	2.1		ets	18
	2.2		anics	20
	2.3			23
			Group and Phase Velocities of the Matter Wave for a Relativistic	
			Particle	23
		Problem 2	Diffraction of Neutrons by a Linear Chain of Nuclei	24
		Problem 3	Bragg Reflection with Index of Refraction	24
		Problem 4	Shape of a Wave Packet in Three Dimensions as a Function of Time	e 26
		Problem 5	The Green's Function for a Free Particle	27
		Problem 6	Dominant Contribution to the Free-Particle Wave Packet	28
		Problem 7	Time Evolution of a Gaussian Free-Particle Wave Packet	30
		Problem 8	Probability Density and Probability Current Density as Expectation	
			Values of Operators	33
		Problem 9	Wigner Distribution	34
	10 8			
3	Schrö	dinger Equatio	n; Uncertainty Relations	36
	3.1	Schrödinger	r Equation for a Particle in a Potential	36
	3.2	Heisenberg	's Uncertainty Relations	38
	3.3	Problems		39

	Problem 1	Average Values of Position and Momentum for a Wave Function	
		$e^{-i\langle p\rangle x/\hbar} \psi(x+\langle x\rangle)$	39
	Problem 2	Probability and Current Densities for a Particle in a Potential	39
	Problem 3	Probability and Current Densities for a Charged Particle	
		in an Electromagnetic Field	40
	Problem 4	Gram-Schmidt Orthogonalization	41
	Problem 5	Heisenberg's Uncertainty Relations: A Derivation	43
	Problem 6	Heisenberg's Uncertainty Relations: An Alternative Derivation	44
	Problem 7	Schrödinger Equation in the p-Representation	45
	Problem 8	Averages and Variances of Position and Momentum Operators	
		for Gaussian Wave Packet	47
	Problem 9	Formulation of the Schrödinger Equation for $\Psi(\mathbf{r}, t) = e^{iS(\mathbf{r}, t)/\hbar}$	49
	Problem 10	Time Evolution of the Averages of the Position and Momentum	
		Operators	52
	Problem 11	Time Evolution of the Average of a Generic Time-Dependent Operator	55
	Problem 12	Charged Particle in an Electromagnetic Field: Lorentz Force	55
The	O Di	I Calandaliana Farradiana Danial Carata	C1
		I Schrödinger Equation; Bound States	61
4.1		e Energy Spectrum and General Properties of the Eigenfunctions	61
4.2			63
4.3		NI. A	64
	Problem 1 Problem 2	No Acceptable Solutions for Energies Less Than the Minimum of $v(x)$ Degeneracy of the Energy Eigenvalues Corresponding to a Potential	64 65
	Problem 3	v(x) Nodes of Excited-State Wave Functions	65
		Coordinate- and Momentum-Space Bound-State Wave Functions	05
	1 TOUICIII 4	in a δ -Function Potential	66
	Problem 5	The Schrödinger Equation in Momentum Space for an Attractive	
		δ-Function Potential	68
	Problem 6	Inequality for Ground-State Energies Corresponding to Potentials	
		$v(x) \leq \overline{v}(x)$	70
	Problem 7	Particle in an Asymmetric One-Dimensional Potential Well	71
	Problem 8	Particle in a Potential $v(x) = \infty$ for $x < 0$ and $v(x) = -v_0 \delta(x - a)$ for	
	D 11 0	x > 0	74
		Particle in a Potential $v(x) = -v_0 [\delta(x) + \delta(x - a)]$: The Ion-	
		ized H_2^+ Molecule	75
	Problem 10	Particle in a Potential $v(x) = -v_0 \delta(x)$ for $ x < a/2$ and	70
	D 11 11	$v(x) = \infty \text{ for } x > a/2$	78
		Particle in a Potential $v(x) = v_0 \theta(a - x) - w_0 \delta(x)$	81
	Problem 12	The WKB Approximation for Bound-State Solutions of the	0.2
	Declater 12	Schrödinger Equation Down d States for an Infinite Domina at w=0 and a Finite Domina for	83
	Problem 13	Bound States for an Infinite Barrier at $x = 0$ and a Finite Barrier for	00
		a < x < b	90

5	Scatte	ring in One Din	nension	94
	5.1		in Terms of Wave Packets	95
	5.2		ive Treatment	97
	5.3	Problems		98
		Problem 1	Scattering in a Repulsive δ -Function Potential	98
		Problem 2	Study of the Potential Step	102
		Problem 3	Linear Potential in Momentum Space	108
		Problem 4	Finite Barrier: Tunneling, Transmission, and Transit Time	110
		Problem 5	Tunneling in the Limit of a High and/or Wide Barrier	114
		Problem 6	Bound- and Scattering-State Problems in a Potential	
			$v(x) = v_0 \theta(-x) - w_0 \delta(x)$	116
		Problem 7	Wave Functions for a Potential $v(x < 0) = \infty$ and $v(x > 0) =$	
			$-v_0\theta(a-x)$	118
		Problem 8	Transmission and Reflection Coefficients in WKB	
			Approximation with Application	122
		Problem 9	Scattering and Resonances in a Potential $v(x) = \infty$ for $x < 0$	
			and $v_0 \delta(x-a)$ for $x>0$	125
		Problem 10	Scattering in a Potential with an Infinite Barrier at $x=0$ and	
			a Finite Barrier for $a < x < b$	129
		Problem 11	Reflection and Transmission for a Particle Confined	
			to the xy-Plane with $v(x, y) = v_0 \theta(x)$	134
		Problem 12	Reflection and Transmission at Two Repulsive δ -Function Potentials	137
		Problem 13	Transmission through Equally Spaced Repulsive δ -Function	139
		Droblom 14	Potentials A. General Treatment of Scottoning: C. Matrix	144
			A General Treatment of Scattering: S-Matrix Scottering in a Parity Invariant Potential: Phase Shift Mathed	
			Scattering in a Parity-Invariant Potential: Phase-Shift Method	148 149
			Application to Scattering in a Repulsive δ -Function Potential	152
			Reflection and Transmission in a Generic Potential	132
6	Mathe	ematical Formu	lation of Quantum Mechanics	155
	6.1	Hilbert Space	ce of Square-Integrable Functions	155
	6.2	Abstract Hil	bert Space	157
	6.3	Representati	ions	160
	6.4	Hermitian C	perators and Observables	162
	6.5	The Coordin	nate and Momentum Representations	164
	6.6	Tensor Prod	ucts	165
	6.7	Problems		167
		Problem 1	The Set of Square-Integrable Functions Forms a Linear Vector Space	167
		Problem 2	The Parity Operator as a Hermitian and Unitary Operator	167
		Problem 3	Properties of the Projection Operator	168
		Problem 4	A Projection Operator onto a State $ \psi\rangle$ in a Three-Dimensional State	
			Space	168
			Properties of the Operator $\hat{O}_{mn} = \phi_m\rangle\langle\phi_n $	169
		Problem 6	A Unitary Operator	170
		Problem 7	Exponentiating the Pauli Matrix σ_y	171

		Problem 8	The Transformation Matrix Relating Two Bases is Unitary	171
		Problem 9	The Momentum Operator in the Coordinate Representation	172
		Problem 10	Momentum and Hamiltonian Eigenvalue Problems in the Coordi-	1.70
		D. 11. 11	nate Representation	173
			The Position Operator in the Momentum Representation	174
		Problem 12	The Hamiltonian Eigenvalue Problem in the Momentum	1574
		D. 11 12	Representation	174
			Some Consequences of the Commutation Relation between \hat{x} and \hat{p}	175
			Trace of an Operator	176
			Properties of Eigenvalues and Eigenstates of a Hermitian Operator	177
		Problem 16	Decompositions of Hermitian Operator in Terms of Its Eigenval-	177
		D. 11 17	ues or Eigenstates	177
			Basis of Simultaneous Eigenstates for Two Observables,	170
		D. 1.1 10	Commutativity	178
			Simultaneous Eigenstate of Two Anticommuting Observables	179
			Normal Operators and Associated Eigenvalues	180
			A Model Hamiltonian	182
			A Simple Two-State Hamiltonian	183
			Eigenvalues and Eigenvectors of a Two-State Hamiltonian	184
			Two Observables in a Three-Dimensional State Space: An Example	185
			Model for a Planar Molecule	187
		Problem 25	Derivation of Formulae Relating to Exponentials of Operators	190
7	Physic	al Interpretation	on: Postulates of Quantum Mechanics	192
	7.1		tion Operator and Time Dependence of Expectation Values	194
	7.2		and Heisenberg Pictures	196
	7.3	Problems		196
		Problem 1	The Probability $p(a_i)$ is Independent of the Basis Adopted	
			in a Degenerate Subspace	196
		Problem 2	Explicit Time Dependence of $\langle \hat{A}(t) \rangle$	197
		Problem 3	Time-Energy Relation	198
		Problem 4	Measurements on a Generic Wave Function $\psi(\mathbf{r})$	198
			Measurements of Non-Commuting Observables	200
		Problem 6	Energy Measurements for a Particle in a One-Dimensional Infinitely Deep Well	202
		Problem 7	Energy Measurements for a Particle in a Two-Dimensional Infinitely	202
		riobiciii /	Deep Well	203
		Problem 8	Measurements of Three Observables in a Three-Dimensional State	
			Space: Example	207
		Problem 9	Consequences of a Sudden Change in the Potential	211
			Time Evolution of $\langle x(t) \rangle$ and $\langle p(t) \rangle$ in a One-Dimensional Linear	
			Potential	216
		Problem 11	The Virial Theorem in One Dimension	217
			Interaction Representation	218
			Two-Flavor Neutrino Oscillations	220

224 227 227 228 231 233 236 240 243 245 248 252
227 228 231 233 236 243 243 245
 227 228 231 233 236 240 243 245
228 231 233 236 240 243 245
231 233 236 240 243 245
233236240243245248
233236240243245248
240 243 245 248
240 243 245 248
243245248
245248
245248
248
252
404
260
270
270
272
274
276
276
277
279
280
280
281
283
285
286
287
289
291
291
293
295
296
296
299
302

	Problem 4		202
	D. 1.1 6		303
			304
			305
			309
			312
	Problem 9	· · · · · · · · · · · · · · · · · · ·	214
	Duolaloma 10		314
	Problem 10		314
	Problem 11		314
	1 TOUICIII 11		315
	Problem 12		317
			322
			324
			325
			327
			341
Angula			332
-			332
			333
			336
		sting of Ligonstates of a land of	337
11.1		Commutation Relations of Matrices Representing the \hat{I}_{i}	337
			337
			339
			340
			340
			341
			342
			344
			344
	1 TOOTOIII O		345
	Problem 9		347
			349
			349
			351
			353
			356
	1 TOOICIII 14	ring cordic Derivation of the fry drogen ritom Spectrum	330
Spin: (Charged Particl	e in an Electromagnetic Field	365
			365
			366
			369
		The first opin in a control first order	370
	11.1 11.2 11.3 11.4 Spin; (12.1 12.2 12.3	Problem 5 Problem 6 Problem 7 Problem 8 Problem 9 Problem 10 Problem 11 Problem 12 Problem 13 Problem 14 Problem 15 Problem 16 Angular Momentum: 11.1 Raising and 11.2 Determining 11.3 Basis Consis 11.4 Problems Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem 5 Problem 6 Problem 7 Problem 8 Problem 10 Problem 10 Problem 11 Problem 12 Problem 13 Problem 14 Spin; Charged Particlem 13 Problem 14	Problem 1 Commutation Relations of Matrices Representing the \hat{J}_l Problem 2 Angular Momentum $j=1/2$ (or Spin 1/2) Problem 3 Matrix Representation of the Angular Momentum Components Problem 4 Averages of \hat{J}_x , \hat{J}_z and \hat{J}_x^2 , \hat{J}_z^2 on a State with $j=1$ Problem 5 Construction of the State of a Spin-1 Particle Polarized in a General Direction Problem 6 Construction of Spherical Harmonics Problem 7 Energy Spectrum of an Asymmetric Rotator Problem 8 Angular Momentum Algebra and the Harmonic Oscillator in Two Dimensions Problem 9 Construction of Angular Momentum Eigenstates Problem 10 Observables Commuting with Two Components of $\hat{\bf J}$ Problem 11 Orbital Angular Momentum and Parity Problem 12 Verification of the Properties Satisfied by \hat{L}_\pm when Acting on $Y_{lm}(\Omega)$ Problem 13 Transformation of States and Vector Operators Under Rotations Problem 14 Algebraic Derivation of the Hydrogen Atom Spectrum Spin; Charged Particle in an Electromagnetic Field 12.1 Treatment of a Spin-1/2 Particle 12.2 Charged Particle with Spin in a Uniform Magnetic Field

		Problem 1	Coordinate Representation of the Operator $\hat{\mathbf{p}} \cdot \hat{\mathbf{S}}$	370
		Problem 2	Spinor Wave Function of the Hydrogen Atom: An Example	371
		Problem 3	The Lorentz Force in Terms of Scalar and Vector Potentials	372
		Problem 4	Lagrange and Hamilton Equations of Motion for Charged Particle in	
			EM Field	372
		Problem 5	Schrödinger Equation for Charged Particle in EM Field and Gauge	
			Invariance	373
		Problem 6	Spin-1/2 Particle in a Time-dependent Magnetic Field	374
		Problem 7	Scattering of Spin-1/2 Particle in Spin-dependent δ -Function Potential	376
			Pauli Hamiltonian for Electron in EM Field	378
		Problem 9	A Simplified Analysis of the Stern-Gerlach Experiment	379
		Problem 10	Polarizing a Beam of Spin-1/2 Particles by a Magnetic Interaction	382
			Time Evolution of a Spin-1 State in a Time-Dependent Magnetic Field	384
			Neutron Interferometry and 4π Rotations of Spinor Wave Functions	386
		Problem 13	Charged Spinless Particle Confined in Plane Perpendicular	
			to Uniform Magnetic Field	388
		Problem 14	Particle Confined to a Cylindrical Region	391
			Ahronov-Bohm Effect for Charged Spinless Particle Con-	
			fined in Cylindrical Shell	394
		Problem 16	Electron in a Uniform Magnetic Field	397
		Problem 17	Spin Precession in a Magnetic Field	404
		Problem 18	Spin Precession in a Magnetic Field: Alternative Treatment	405
		Problem 19	Magnetic Resonance	406
3	Additi	on of Angular I	Momenta	411
	13.1	Eigenvalues	of the Total Angular Momentum $\hat{\mathbf{J}}^2$	412
	13.2	Clebsch-Go	ordan Coefficients	414
	13.3	Problems		416
		Problem 1	Determining the Minimum Value $ j_1 - j_2 $ in the Addition	
			of Two Angular Momenta	416
		Problem 2	Angular Momentum in the Deuterium Atom	417
		Problem 3	Combining Angular Momenta 1 and 1/2	417
		Problem 4	Combining the Spins of Three Spin-1/2 Particle	418
		Problem 5	Projection Operators onto $j = l \pm 1/2$ States	419
		Problem 6	Angular Momentum and Parity Conservation in a Two-Particle Decay	420
		Problem 7	The Addition Formula for Two Spherical Harmonics	422
		Problem 8	Positronium in a Magnetic Field	424
		Problem 9	Decay of a Spin-1/2 Particle into a Spin-0 Particle and a Spin-1/2	
			Particle	426
		Problem 10	Addition of Three Angular Momenta	429
			Machine Tield Bulliamikong A.	18112-2
14	Appro	ximation Meth	ods	433
			erate Perturbation Theory	433
			Perturbation Theory	436
	14.3	The Variatio	onal Method	439
	14.4	Problems		441

	Problem 1	Second-Order Correction to an Energy Eigenstate	441
	Problem 2	Wave-Function Renormalization Constant	441
		One-Dimensional Harmonic Oscillator in a Uniform Electric Field	442
		Particle in an Infinite Potential Well Subject to a Barrier Perturbation	443
		Alternative Derivation of First-Order Energy in Degenerate	1111
		Perturbation Theory	447
		Particle Confined in a Box and Subject to a Perturbation	448
		Effect of Finite Nuclear Size on Energy Spectrum of Hydrogen-Like	770
	1 TOOICIII 7	Atom	450
	Problem 8	Hydrogen Atom in a Static External Electric Field: Stark Effect	453
	Problem 9	Spin-1/2 System in a Uniform Magnetic Field in a Generic Direction	455
		Charged Particle Constrained on a Circle in a Uniform Electric Field	457
		Electron Interacting with Two ³ He Nuclei in a Magnetic Field	460
	Problem 12	Nucleus with Spin in Non-Uniform Electric Field and Weak	160
	D 11 10	Magnetic Field	463
		Degenerate Perturbation Theory in Second Order: An Example	468
		Charged Particle in Anisotropic Harmonic Oscillator Potential and	
		Uniform Magnetic Field	470
	Problem 15	Hydrogen Atom in a Uniform Electric Field: Induced Electric Dipole	
		Moment	473
		A Symmetric Rotator under the Influence of a Small Perturbation	475
	Problem 17	Electron in a Harmonic Potential under the Action of a Uniform	
		Electric Field	476
	Problem 18	Leading-Order Correction for the Hydrogen-Atom Ground-State	
		Energy in an Electric Field	483
	Problem 19	Perturbative Calculation of the Relativistic Kinetic Energy Term in	
		Hydrogen-Like-Atom Levels	488
	Problem 20	Derivation of the Brillouin-Wigner Perturbation Theory	492
	Problem 21	Variational Calculation of the Ground-State Energy in a Screened	
		Coulomb Potential	496
	Problem 22	Variational Calculation of the Hydrogen Atom Ground-State Energy	497
		Variational Calculation of the Helium Atom Ground-State Energy	498
		The Born–Oppenheimer Approximation	500
		Variational Calculation of the H ⁺ ₂ Molecular Ion Binding Energy	506
		Estimating Bound-State Energies of a Hamiltonian with the	
		Variational Method	511
15 Scatte		ntial	516
		on and Scattering Wave Function	516
		nation for Scattering, Lippmann–Schwinger Equation, and Born	510
10.2	Approximat		519
15.3		y a Central Potential: Phase-Shift Method	522
0.700.00		y a Central Potential. Phase-Sinft Method	527
13.4	Problem 1		521
	1 TOOICIII I	Verifying That the Asymptotic Wave Function Satisfies	527
		the Schrödinger Equation	341

	Problem 2	Born Approximation for Scattering in Yukawa and Coulomb Potentials	527
	Problem 3	Born Approximation for Scattering in a Gaussian Potential	528
	Problem 4	Alternative Derivation of the PDE Satisfied by the Scattering Green's	
		Function	529
	Problem 5	On the Validity of the Born Approximation	530
	Problem 6	Optical Theorem	531
	Problem 7	Integral Equation for Bound States	533
	Problem 8	Derivation of the Scattering and Bound-State Green's Functions	534
	Problem 9	Perturbative Expansion of the Scattering Wave Function	
		and Scattering Amplitude	536
	Problem 10	Relating the Partial Wave Amplitude f_{kl} to the Phase Shift δ_{kl}	537
	Problem 11	Low-Energy Behavior of the Phase Shifts	538
	Problem 12	Hard-Sphere Potential: Phase Shifts, Low- and High-Energy Limits	
		of Total Cross Section	539
	Problem 13	Study of the Spherical Potential Well in S-Waves; Resonances	541
	Problem 14	S-Wave Bound- and Scattering-State Problem in an Attractive	
		δ-Shell Potential	547
	,	Scattering in a Repulsive δ -Shell Potential	548
		Integral Equation for Scattering in One Dimension	552
		Partial Wave Expansion of the Free-Particle Wave Function	554
		Derivation of an Integral Relation for the Phase Shift	557
	Problem 19	Partial Wave Expansion of Integral Equation for Scattering in Central	
		Potential	558
	Problem 20	Phase Shift as Integral over Radial Scattering Solution of	
		Schrödinger Equation	564
		Scattering in a Spin-Dependent Potential	566
		Phase Shift in the Born Approximation	570
		Effective Range Theory	572
		Phase Shift in the High-Energy Approximation	574
	Problem 25	Eikonal Approximation for the Scattering Amplitude	578
16 Symm	etry Transform	nations of States and Operators	582
16.1	Space and T	ime Translations	584
16.2	Rotations	Ejelh Mier bila, establafa Mondiskamin (6) 2 majaarii *	585
16.3	Discrete Syn	mmetries: Space Inversion and Time Reversal	588
	16.3.1 Tim	ne Reversal; Properties of Anti-Unitary Operators	588
	16.3.2 Tra	nsformation of States and Operators under Time Reversal	590
16.4	Problems		593
	Problem 1	Transformation of the Position Operator under a Translation	593
	Problem 2	Charged Particle in a Harmonic Oscillator Potential and a Uniform	
		Electric Field	593
	Problem 3	Periodic Potential and Bloch Waves	594
		Periodic Potential and Bloch Waves: An Alternative Treatment	596
		The Kronig-Penney Model	597
	Problem 6	Construction of the Rotation Matrices from the Infinitesimal Generators	600

	Problem 7	Explicit Expression for the Rotation Operator in Spin Space	601
	Problem 8	Rotation by 2π	602
	Problem 9	Consequences of Rotational Invariance	603
	Problem 10	Matrix Elements of Vector Operators and Rotations	604
	Problem 11	Transformation of a Spin-1/2 Angular Momentum Operator Under a General Rotation	606
		Explicit Derivation of the Transformation Properties of $\hat{\bf r}$, $\hat{\bf p}$, and $\hat{\bf L}$ under Rotations	607
		Construction of a Spin State Polarized Along a Generic Direction $\hat{\mathbf{n}}$	608
		Construction of the Unitary Operator Inducing Galilean	
	D 11 17	Transformations	609
		Consequences of Space Inversion Symmetry	611
	Problem 17	A Model for the Ammonia Molecule and Broken Parity Symmetry Unitarity Implies Linearity and Anti-Unitarity Implies Antilinearity The Unitary Operator $\hat{U}_{\mathcal{T}}$ in $\hat{\Omega}_{\mathcal{T}} = \hat{U}_{\mathcal{T}} \hat{K}$ Depends on the	612 616
	r iouiciii io	Representation	617
	Droblem 10	Time Evolution of a State and of Its Time-Reversed Partner	
		On Eigenfunctions of Non-Degenerate Eigenvalues of a Time-	617
		Reversal-Invariant Observable	618
		Transformation of States under $\hat{\Omega}_{\mathcal{T}}^2$; Kramers' Degeneracy	618
	Problem 22	Time-Reversal Invariance and Scattering of Spinless Particles	619
		d the Wigner–Eckart Theorem; Fine and Hyperfine Structure of Energy Levels in	1
Hydro	gen-Like Atom		622
17.1		Tensor Operators and the Wigner–Eckart Theorem	623
17.2	Matrix Elem	nents of Scalar and Vector Operators	626
17.3	Relativistic	Corrections to Hydrogen-Like-Atom Hamiltonian	627
17.4	Problems		631
	Problem 1	Some Properties of Rotation Matrices	631
	Problem 2 Problem 3	Physical Interpretation of the Matrix Elements $D_{m,m'}^{(j)}(\alpha, \beta, \gamma)$ Explicit Calculation of the Transform of an Angular Momentum	632
		Component under Rotation	632
	Problem 4	Construction of the Rotation Matrix $\underline{D}^{(1)}(\alpha, \beta, \gamma)$	633
		Commutation Relations of $\hat{\mathbf{J}}$ with the Spherical Components of a Vector Operator	635
		Combining Two ITOs	635
		ITOs of Ranks 0, 1, and 2 from Two Vector Operators	636
		Product of Two Rotation Matrices	638
		Transformation Law of ITOs under Rotations	639
		Transformation Law under Rotations of ITOs of Rank 1 (Vector	037
		Operators)	639
	Problem 11	The Rotation Matrices as Polynomials of Order 2j in $sin(\beta/2)$ and	
		$\cos(\beta/2)$	641
	Problem 12	Some Properties of the Rotation Matrices	642
	Problem 13	An Explicit Derivation of the Rotation Matrices	645

		Problem 14	Rotating the States or Rotating the Operator: An Example	648
		Problem 15	Fine Structure of the Hydrogen Atom	651
			Spin-Orbit Corrections to the Ground and First-Excited Levels of	
			the Hydrogen Atom	655
		Problem 17	Effects of Relativistic Corrections on 1s, 2s, and 2p Levels of the	
			Hydrogen Atom	658
		Problem 18	Hydrogen Atom in a Magnetic Field (Zeeman and Paschen-Back	
			Effects)	659
		Problem 19	Hyperfine Structure of the Hydrogen Atom	661
		Problem 20	The Tensor Term in the Hyperfine Interaction	664
		Problem 21	ITOs and Time-Reversal Invariance	667
18	Time-I	Dependent Per	turbation Theory	669
	18.1	Perturbative	Expansion for the Time Evolution Operator	669
	18.2	Special Case	es: Constant and Periodic Perturbations	671
		Problems		673
		Problem 1	Time Evolution in a Two-State System	673
		Problem 2	Spin-1 System Perturbed by an Oscillating Field	676
		Problem 3	Alternative Derivation of Time-Dependent Perturbation Theory	678
		Problem 4	Elastic Scattering Cross Section in Born Approximation from	
			Fermi's Golden Rule	680
		Problem 5	Positronium in Static and Oscillating Magnetic Fields	681
		Problem 6	The Transition $i \longrightarrow i$	686
		Problem 7	Hydrogen Atom in Time-Dependent EM Fields: Doppler Effect and	
			Recoil Energy	689
		Problem 8	Two Spin-1/2 Particles of Opposite Charge in a Time-Dependent	
			Magnetic Field	692
		Problem 9	Hydrogen Atom in a Time-Dependent Electric Field	694
		Problem 10	Charged Harmonic Oscillator Subjected to an Electric Field Pulse	697
		Problem 11	A One-Dimensional Model for the Photoelectric Effect	701
		Problem 12	Inelastic Scattering of a Projectile at a Target: A Simple Model	703
		Problem 13	Ionization of a Hydrogen Atom by an External Electromagnetic Field	705
		Problem 14	Cross Sections for Stimulated Absorption and Emission in Hydrogen	710
		Problem 15	Spontaneous Emission: Selection Rules	712
		Problem 16	The 2p → 1s Transition in Hydrogen	713
		Problem 17	Theory of the Line Width	715
		Problem 18	Formal Scattering Theory	720
19	Systen	ns of Identical	Particles	726
	19.1	States of Ide	entical Particles	727
	19.2	Problems		729
		Problem 1	Energy Levels of Three Identical Fermions or Three Identical Bosons	729
			When Can the Symmetrization Postulate Be Ignored?	730
		Problem 3	Properties of the Exchange Operator	732
		Problem 4	Two Bosons or Two Fermions in a Central Potential	733

	Problem 5	Two-Particle Transition Amplitudes in a Central Potential	735
	Problem 6	Properties of Permutation Operators for Three Particles	739
	Problem 7	Symmetrizer and Antisymmetrizer and N-Particle States	741
	Problem 8	Expectation Value of a Totally Symmetric Operator on an N-	
		Particle Antisymmetric State	744
	Problem 9	The Fermi Gas	745
	Problem 10	White Dwarf Stars	748
		The Thomas–Fermi Approximation for Many-Electron Atoms	751
Bibliogr			755
Index			756

Epphinon katakapitambidatakipitambidatakibaaniThaditrahabianbidatakibananfirmitta Nationarity

Problem 1 Faming Constant Pertodic Pertodic President State 1981

Problem 9 Hyarogan Alom in a Time-Dependent Elecuter Pulls