

Contents

About the editors

xvii

1 Introduction

Niels Agerholm, Matúš Šucha and Aliaksei Lareshyn

Reference

1

3

2 Accident data and records

Carmelo D'Agostino and Piotr Olszewski

2.1 Definition of road accidents

2.1.1 Introduction

2.1.2 Formal definitions of accident events and accident frequency

2.1.3 Statistical definition of accident frequency

2.2 Accident data collection

2.2.1 Introduction

2.2.2 Accident reporting process

2.2.3 Self-reported accidents

2.2.4 Accident reports and in-depth accident investigations

2.3 Accident databases

2.3.1 Introduction

2.3.2 International databases

2.3.3 The international experience

2.3.4 Problem of data harmonization

2.4 How to interpret accident data

2.4.1 Introduction

2.4.2 Identification of hazardous locations

2.4.3 What underreporting is and why it is a problem

2.4.4 Concluding remarks

References

5

5

7

8

8

8

11

12

14

14

15

17

18

19

19

22

23

23

24

3 Accident modelling: an overview

Carmelo D'Agostino and Bhagwant Persaud

3.1 Introduction

29

3.2 Why accident modelling?

29

3.2.1 Basic definitions

30

3.2.2 Regression to the mean effect and relationship with exposure

30

30

30

3.3	Regression technique, model form and goodness-of-fit evaluation	31
3.3.1	Introduction	31
3.3.2	The generalized linear modelling (GLM) approach	32
3.3.3	Goodness-of-fit measures	34
3.3.4	Empirical Bayes estimation and the role of the NB dispersion parameter	36
3.3.5	Key points on accident modelling	38
3.4	Available knowledge	39
3.4.1	Introduction	39
3.4.2	The Highway Safety Manual	39
3.4.3	Scientific literature: old and new challenges	40
	References	42

4 In-depth accident investigations 47

John-Fredrik Grönvall

4.1	Background	47
4.2	Methodologies	48
4.2.1	Different needs of methods and techniques	48
4.2.2	Background investigation	48
4.2.3	On-scene investigation	49
4.2.4	Retrospective investigation	52
4.2.5	Special Crash Investigations (SCIs, severe accidents with special attendance)	52
4.3	Selection/sampling criteria	52
4.4	Interviews of involved persons	52
4.5	Variables in the database	54
4.5.1	Crash details	54
4.5.2	Vehicle information	54
4.5.3	Human factors	54
4.5.4	Environmental factors	55
4.5.5	Post-crash outcomes	55
4.5.6	Legal and regulatory variables	56
4.5.7	Other variables	56
4.6	Case analysis	56
4.7	Representativity of collected data	57
4.7.1	Comprehensive data collection	57
4.7.2	Random sampling	57
4.7.3	Demographic representation	57
4.7.4	Geographic and environmental factors	58
4.7.5	Standardized data collection methods	58
	References	58

5 Healthcare data 59

Niels Bos, Aliaksei Laureshyn and Carl Johnsson

5.1	Limitations of police accident records	59
-----	--	----

5.2	Healthcare data	62
5.2.1	Potentials of healthcare data for road accident research	63
5.2.2	Types of hospital records, availability	64
5.2.3	Injury classifications	66
5.2.4	Linking police and hospital records	71
5.2.5	Hinders for access and use of hospital data	76
5.3	Case example: the Netherlands	76
5.3.1	History	76
5.3.2	The linked database	77
5.4	Case example: Sweden	83
5.4.1	Historical note	83
5.4.2	Strada database	84
5.5	Conclusion	88
	References	89

6	The use of self-reported data in road safety research	97
	<i>Wouter Van den Berghe and Uta Meesmann</i>	
6.1	Introduction	97
6.1.1	Using self-reported data in research	97
6.1.2	Sources and references	97
6.1.3	Overview of main data collection methods for self-reported data	98
6.2	Advantages and limitations of using questionnaire surveys in road safety research	100
6.2.1	Advantages of using questionnaire surveys	100
6.2.2	Additional advantages of using online panels for questionnaire surveys	101
6.2.3	Limitations of questionnaire surveys	102
6.2.4	Specific limitations of using online panels	104
6.2.5	Suitability of self-reported data collection for road safety research	105
6.3	Measuring road user behaviour through self-reporting	105
6.3.1	Methods for measuring road user behaviour	105
6.3.2	Example comparing self-reported and observed behaviour	107
6.3.3	International acceptance of data on self-reported behaviour	109
6.3.4	Future directions for self-reported data on behaviour in traffic	109
6.4	Good practice in self-reported data collection	110
6.4.1	Survey design	110
6.4.2	Data analysis	113
6.4.3	Ethical considerations when questioning people in surveys	114
6.5	Some examples of studies using self-report data	114
6.5.1	The ESRA initiative	114
6.5.2	Public support for policy measures	116

6.5.3	Traffic Safety Culture Index	117
6.5.4	Measuring drowsy driving	118
6.6	Conclusion	118
	References	119
7	Automated driving and safety data	125
	<i>Andrew Tarko and Vamsi Bandaru</i>	
7.1	Components of driving task	126
7.1.1	Perceiving the surrounding environment	127
7.1.2	Communicating with nearby road users and/or infrastructure	128
7.1.3	Predicting near-future positions of nearby road users (risk-free situation)	128
7.1.4	Planning own motion to eliminate the risk of collision	129
7.1.5	Execution of the planned trajectory	129
7.2	AV collected data	130
7.2.1	Own perception sensors data	130
7.2.2	Data received from other vehicles and roadside units	131
7.2.3	Prediction and planning results	131
7.2.4	Motion and vehicle control data	131
7.3	Safety-relevant incidents and their causes	131
7.3.1	Causes of conflicts and crashes	132
7.3.2	AV data for crash analysis	133
7.3.3	AV data for traffic conflicts analysis	134
7.4	Data sharing and users	136
7.4.1	Government	137
7.4.2	Insurance companies	138
7.4.3	Vehicle owners	139
7.4.4	Individual AV owners	139
7.4.5	AV fleet owners	140
7.4.6	AV manufacturers	140
7.5	Conclusion	141
	References	142
8	Naturalistic (driving/cycling/walking) studies	147
	<i>Niels Agerholm</i>	
8.1	Theoretical background	147
8.2	What are naturalistic driving studies?	147
8.3	Methods	148
8.4	Data for NDS	149
8.4.1	GNSS data in NDS	150
8.4.2	Video recording in NDS	150
8.5	Examples of projects based on GNSS data	151
8.6	Examples of NDS based on video recording	152

8.7	Type of analyses	152
8.8	Pitfalls regarding data analyses	153
	References	154
9	Surrogate measures of safety: site-based observations	157
	<i>Aliaksei Lareshyn and Nicolas Saunier</i>	
9.1	Why surrogate measures?	157
9.1.1	Limitations of accident data	157
9.1.2	Historical note	158
9.2	Theoretical background	159
9.2.1	Hierarchy of events	159
9.2.2	Concept of severity	161
9.2.3	Traffic conflicts and exposure	162
9.2.4	Traffic conflicts and accidents	164
9.2.5	Reliability and validity	166
9.3	Indicators, measures and techniques	166
9.3.1	TTC family	167
9.3.2	PET family	170
9.3.3	Measures related to evasive actions	171
9.3.4	Outcome-based indicators	172
9.3.5	Combined indexes	173
9.3.6	TCTs	173
9.4	Data collection tools	174
9.4.1	Human observations	174
9.4.2	Video recording	175
9.4.3	Video analysis and other emerging technologies	176
9.5	Future directions	177
	References	180
10	Behavioural observations	189
	<i>Matiš Šucha and Ralf Risser</i>	
10.1	Theoretical background	189
10.2	Methods/types of observations	192
10.2.1	Obtrusive vs. unobtrusive observation	192
10.2.2	Stationary observation	193
10.2.3	Observation with technical help or solely by technical equipment	194
10.2.4	Behaviour observation on the traffic simulator	195
10.3	Description of procedures and data	195
10.3.1	In-car observation with a focus on the Vienna driving test	195
10.3.2	Traffic conflict registrations on site	199
10.3.3	On-site observation of behaviour and interaction of road users	200
10.3.4	FOT/natural driving studies (NDS)	201
		204

10.4	Some results of studies with the help of observation methods	206
10.4.1	In-car observations: some applications and results	206
10.4.2	Traffic conflict registrations: some applications and results	207
10.4.3	Some results derived from on-site observation studies	208
10.4.4	FOT/NDS: some applications and results	209
10.5	How to understand traffic behaviour with help of the model of Michon	211
10.5.1	Ride along and road-user following	212
10.5.2	Behaviour observation on-site and traffic conflict registrations	213
10.5.3	FOT	213
10.5.4	NDS	214
10.5.5	Conclusion – Understanding what road users do and why they do it	214
References		215

11 Road Safety Inspection and Road Assessment Programme 221

<i>András Várhelyi</i>		
11.1	Road Safety Inspection	221
11.1.1	Why RSI?	222
11.1.2	Benefits and costs of RSI	222
11.1.3	When should RSI be carried out?	223
11.1.4	Partners involved in the RSI process	224
11.1.5	Who can perform RSI?	224
11.1.6	Organisational issues	224
11.1.7	Performing an RSI	225
11.1.8	Good RSI practice guidelines	227
11.1.9	Typical safety deficiencies identified by RSIs	228
11.2	Road Assessment Programme	231
11.2.1	Star Rating	232
11.2.2	Risk mapping	233
11.2.3	Performance tracking	234
11.3	Concluding remarks	235
References		235

12 Safety performance indicators 237

<i>Wouter Van den Berghe, Victoria Gitelman and Shalom Hakkert</i>		
12.1	Introduction	237
12.1.1	What are safety performance indicators?	237
12.1.2	The role of SPIs in road safety management	238
12.2	Methodological rules for using SPIs	239
12.2.1	The basic model	239
12.2.2	Criteria and conditions for using SPIs	241
12.2.3	SPIs' subdivisions	242

12.2.4 Principles for data collection and analysis for estimating SPIs	245
12.3 Current practices on the use of SPIs	249
12.3.1 International recommendations	249
12.3.2 Good practice in using SPIs	251
12.3.3 Examples of SPI evaluations	253
12.3.4 SPIs as predictors of road safety outcomes	253
12.4 Discussion: challenges and future needs	256
References	258
13 Insurance data	263
<i>Magdalena Lindman and Anders Kullgren</i>	
13.1 Introduction	263
13.2 Analyzing trends of crashes and injured traffic participants to supplement official statistics	263
13.2.1 Differences between insurance statistics and official road traffic statistics	263
13.2.2 Example of insurance data reports of trends for crashes and injured traffic participants	264
13.2.3 The advantage of a common long-term injury classification, a Swedish method	265
13.3 Conducting retrospective studies on the effectiveness of safety interventions	265
13.4 Providing consumer information on losses incurred by used cars	266
13.4.1 Example IIHS, HLDI: insurance losses by make and model and driver death rates by make and model	266
13.4.2 Example: Folksam's How safe is your car?	267
13.5 Enrichment of insurance data: creation of crash databases and crash datasets	269
13.5.1 UDB – the German Insurance Association crash database	269
13.5.2 VCTAD – Volvo Cars traffic Accident Database	270
13.5.3 PAV – the People Around the Vehicle crash database by If	270
13.5.4 Insurance datasets with information from crash recorders	271
References	274
14 Traffic safety footprint and safe organisations	277
<i>Matilda Magnusson and Carlos Viktorsson</i>	
14.1 Traffic safety footprint	277
14.2 Organisational traffic safety data	278
14.3 Challenges and opportunities related to organisations and traffic safety	279
14.4 Future and potential	281
References	282

15 Background data	285
<i>Jenny Eriksson and Maria Varedian</i>	
15.1 Total vehicle mileage – definition and theory	288
15.2 Design of a study for the estimation of total vehicle mileage	288
15.3 Speed – approach and analysis	291
References	292
16 A brief introduction to research ethics	295
<i>Ulf Görman</i>	
16.1 Good research conduct	295
16.2 Ethics-related control	295
16.3 A risk-based approach	296
Reference	299
17 Use of personal data and artificial intelligence—ethical and legal issues	301
<i>Ulf Görman</i>	
17.1 Introduction	301
17.2 Proviso	301
17.3 Historical aspects of human rights and data protection	302
17.4 Personal integrity – why it matters	303
17.5 The EU General Data Protection Regulation (GDPR)	304
17.5.1 What are personal data?	304
17.5.2 What does processing of personal data involve?	305
17.6 General rules for the management of personal data	305
17.7 Lawfulness	308
17.7.1 Special categories of data	308
17.7.2 Personal data relating to criminal convictions and offences	309
17.8 Fairness and transparency	309
17.8.1 The rights of the data subject	310
17.9 Consent	311
17.9.1 Withdrawal of consent	311
17.9.2 Information and consent to participation in activities vs. data processing	312
17.9.3 Safeguards and derogations related to personal data in the public interest or scientific purposes	312
17.10 GDPR on profiling	313
17.11 Anonymous information	313
17.12 International projects	314
17.13 Open access to research data	315
17.14 What is new with AI?	316
17.14.1 The EU AI Act	316
17.14.2 Ethics guidance for trustworthy AI	320

17.14.3 Foundations of Trustworthy AI	321
17.14.4 Requirements for trustworthy AI	322
References	326
18 Conclusion	329
<i>Matúš Šucha, Niels Agerholm and Aliaksei Lareshyn</i>	
Index	335

Aliaksei Lareshyn is an associate professor in traffic safety at Lund University, Sweden. His core competence is within theory and practical application of proactive (non-accident based) methods in safety analysis. Other research interests cover emerging technologies for data collection in traffic, safety of vulnerable road users, and policy and practice within traffic safety management, both in mature contexts and in low- and middle-income countries. He is a passionate educator about the system approach to traffic safety, giving lectures and courses on this subject in different areas and in different countries. Since 2021, he has acted as the editor-in-chief of the *Traffic Safety Research* journal (2004–3082).

Niels Agerholm is the executive manager for Road Sector & Authority at The Danish Road Directorate. His departments work with traffic planning, road administration, road design, road freight transport and legal support. He holds a Master's Degree and a Doctoral Degree from Aalborg University in Denmark. He has worked with traffic safety research for 14 years, but since 2020, he has worked for the Danish Road Directorate.

Matúš Šucha is a Czech traffic psychologist and professor of traffic psychology at Palacký University in Olomouc. His professional focus is on the field of traffic psychology, specifically on issues of mobility, sustainability and safety. He is a forensic expert and a European mentor in the field of traffic psychology. He is the author of many publications on the human factor in transport. He is an active member of many prestigious international organizations, among others, vice-president of ITCCT – International Co-operation on theories and concepts in traffic safety.