Contents

Pt	reface		vii
P	PART I The Conceptual Basis for Fitting Statistical Models		
1	Gen	eral Introduction	3
	1.1	The purpose of statistics	3
	1.2	Statistics in a schizophrenic state?	4
	1.3	How is this book organized?	4
	1.4	How to use this book	6
	Refer	ences	7
2	Stat	istical Modeling: A short historical background	9
	2.1	What is a statistical model?	9
	2.2	What is this thing called probability?	10
	2.3	Linking probability with statistics	13
	2.4	The early Bayesian demise during the 1930s	15
	Refer	ences	17
3		mating Parameters: The main purpose of statistical rence	19
	3.1	Introduction	19
	3.2	Least squares: A theory of errors and the normal distribution	20
	3.3	Maximum likelihood	20
		3.3.1 The basic concepts	20
		3.3.2 Obtaining maximum likelihood estimates	22
		3.3.3 Using maximum likelihood estimates in statistical inference	27
	3.4		29
	3.5	Bayesian methods: Markov chain Monte Carlo to the rescue	36
	3.6	Quality control for the algorithms of Bayesian methods	45
	3.7	More general MCMC variations: Metropolis–Hastings and Gibbs algorithms	46
	3.8	Recent advances in Bayesian methods: Hamiltonian Monte Carlo	48
	3.9	Bayesian hypothesis tests	50
	3.10	Summary of the main differences between maximum likelihood and Bayesian methods	51
	Refer	ences	54

xii

PART II Applying the Generalized Linear Model to Varied Data Types

4	The	General Linear Model I: Numerical explanatory variables	59
	4.1	Introduction	59
	4.2	The lognormal distribution and its relation to the general linear	
		model	60
	4.3	Simple linear regression: One continuous explanatory variable	61
	4.4	Simple linear regression: Frequentist fitting	64
	4.5	Tools for model validation in frequentist statistics	66
	4.6	Simple linear regression: Bayesian fitting	69
	4.7	Tools for model validation in Bayesian statistics	78
	4.8	Multiple linear regression: More than one numerical explanatory	00
		variable	80
	4.9	Multiple linear regression: Frequentist fitting	84
	4.10	•	86
	4.11	Polynomial regression	90
	4.12	Multiple linear regression: Bayesian fitting	91
	4.13	Problems	98
	Refer	ences	98
5	The General Linear Model II: Categorical explanatory		
	variables		101
	5.1	Introduction	101
	5.2	Student's t test: One categorical explanatory variable with two	
		groups	101
	5.3	The <i>t</i> -test: Frequentist fitting	106
	5.4	The t-test: Bayesian fitting	110
	5.5	Viewing one-way analysis of variance as a multiple regression	115
	5.6	One-way analysis of variance: Frequentist fitting	120
	5.7	One-way analysis of variance: Bayesian fitting	124
	5.8	A posteriori tests in frequentist models	130
	5.9	A posteriori tests in Bayesian models?	134
	5.10	Problems	136
	References		137
6	The	General Linear Model III: Interactions between	
	explanatory variables		
	6.1	Introduction	139
	6.2	Factorial analysis of variance	139
	6.3	Factorial analysis of variance: Frequentist fitting	145
	6.4	Factorial analysis of variance: Bayesian fitting	149

237

	15	1-1-1-6			
	6.5	Analysis of covariance: Mixing continuous and categorical explanatory variables	156		
	6.6	Analysis of covariance: Frequentist fitting	158		
	6.7	Analysis of covariance: Bayesian fitting	162		
	6.8	Problems	168		
	Refer	ences	168		
7	Mod	lel Selection: One, two, and more models fitted to the			
	data		169		
	7.1	Introduction	169		
		The problem of model selection: Parsimony in statistics	170		
		Model selection criteria in the frequentist framework: AIC	172		
	7.4				
		WAIC	176		
	7.5	The posterior predictive distribution and posterior predictive			
		checks	178		
	7.6	Now back to the WAIC and LOO-CV	182		
	7.7	Prior predictive distributions: A relatively "new" kid on the block	185		
	Refer	ences	186		
8	The	Generalized Linear Model	189		
	8.1	Introduction	189		
	8.2	What are GLMs made of?	189		
	8.3	Fitting GLMs	193		
	8.4	Goodness of fit in GLMs	194		
	8.5	Statistical significance of GLM	198		
	Refer	ences	198		
9	Whe	n the Response Variable is Binary	201		
	9.1	Introduction	201		
		Key concepts for binary GLMs: Odds, log odds, and additional	201		
		link functions	202		
	9.3	Fitting binary GLMs	203		
	9.4	Ungrouped binary GLM: Frequentist fitting	207		
	9.5	Further issues about validating binary GLMs	213		
	9.6	Ungrouped binary GLMs: Bayesian fitting	216		
	9.7	Grouped binary GLMs	227		
	9.8	Problems	233		
	Refer	ences	233		
0	Whe	When the Response Variable is a Count, Often with Many			
	Zero		235		
	10.1	Introduction	235		
	10.2	Over-dispersion: A common problem with many causes and			
		some solutions	237		

	10.3	Plant species richness and geographical variables	239
		10.3.1 Frequentist fitting of the count GLM	242
		10.3.2 Bayesian fitting of count GLMs	247
	10.4	Modeling of counts with an excess of zeros: Zero-inflated and	
		hurdle models	254
		10.4.1 Frequentist fitting of a zero-inflated model	256
		10.4.2 Bayesian fitting of a zero-augmented model	261
		Problems	268
	Refere	nces	269
11	Furth	er Issues Involved in the Modeling of Counts	271
	11.1	"The more you search, the more you find"	271
		Log-linear models as count GLMs	272
		Frequentist fitting of a log-linear model	275
		Bayesian fitting of a log-linear model	284
		Problems	291
	Refere		292
12	Made	ale for Desitive Peal Valued Personse Variables	
12		els for Positive, Real-Valued Response Variables: ortions and others	293
	12.1	Introduction	293
		Modeling proportions	293
		Plant cover, grazing, and productivity	295
		Frequentist fitting of a GLM on proportions	297
		Bayesian fitting of a GLM on proportions	303
		Modeling positive, real-valued response variables	311
		Predicting tree seedling biomass	312
			314
	12.8		317
	12.9	Bayesian fitting of a gamma GLM	317
	12.10	Other related yet important cases of positive, real-valued response variables	319
	12 11	Problems	320
	Refere		321
Ap	proac	hes to Defining Priors	323
PAI	RT III	Incorporating Experimental and Survey Design Using	
		Mixed Models	
13	Acco	unting for Structure in Mixed/Hierarchical Models	327
		Introduction	327
		Fixed effects and random effects in the frequentist framework	329
		Defining mixed effects models	332
	10.0	Delining mined effects models	004

	13.4	Problems and inconsistencies with the definition of random effects	335
	13.5	Population-level and group-level effects in Bayesian hierarchical models	336
	13.6	Fitting mixed models in the frequentist framework	339
	13.7	Statistical significance and model selection in frequentist mixed models	353
	13.8	The shrinkage or borrowing strength effect in mixed models	356
	13.9	Fitting mixed models in the Bayesian framework	358
	13.10	Problems	370
	Refere	nces	371
14	Experimental Design in the Life Sciences: The basics		373
	14.1	Introduction	373
	14.2	The basic principles of experimental design	374
	14.3	Surveys and observational studies	376
	14.4	The main types of experimental design used in the life sciences	376
		14.4.1 Factorial design	377
		14.4.2 Randomized block design	378
		14.4.3 Split-plot design	380
		14.4.4 Nested design 14.4.5 Repeated measures design	382 384
		14.4.6 Crossover design	385
	14.5	How many samples should we take?	387
	Refere		390
15	Mixe	d Hierarchical Models and Experimental Design Data	393
	15.1	Introduction	393
	15.2	Binary GLMM with a randomized block design	394
		15.2.1 Binary GLMM with a randomized block design: Frequentist	
		models	398
		15.2.2 Binary GLMM with a randomized block design: Bayesian	107
	15.0	models	407
	15.3	Gaussian GLMM with a repeated measures design	416
		15.3.1 Gaussian GLMM with a repeated measures design: Frequentist models	420
		15.3.2 Gaussian GLMM with a repeated measures design: Bayesian models	423
	15.4	Beta GLMM with a split-plot design	428
		15.4.1 Beta GLMM with a split-plot design: Frequentist model	432
		15.4.2 Beta GLMM with a split-plot design: Bayesian model	439
	15.5	Problems	449
	Refere	nces	449

xvi CONTENTS

Afterword	451
Appendix A: List of R Packages Used in This Book	453
Appendix B: Exploring and Describing the Evidence in Graphics	
(only available online at www.oup.com/companion/InchaustiSMWR)	
Appendix C: Using R and RStudio: The Bare-Bones Basics	
(only available online at www.oup.com/companion/InchaustiSMWR)	
Index	455