Contents

		_		100
-		-		
$\mathbf{\nu}$	rei	га	ro	_ v

Foreword — VII

Cha	pter	1
		_

Cardiovascu	ılar disease diagnosis using AI-based imaging —— 1
1.1	Introduction —— 1
1.2	AI: general medical applications —— 2
1.3	Introduction to artificial intelligence —— 2
1.3.1	Machine learning —— 3
1.3.2	Deep learning —— 4
1.4	Electronic health: mobile health and IoT —— 5
1.4.1	Mobile health —— 5
1.4.2	Internet of Things —— 5
1.5	AI-based general application in CVD —— 6
1.5.1	Precision medicine —— 6
1.5.2	Clinical predictions —— 6
1.5.3	Intelligent robots —— 6
1.6	Other medical applications of AI in CVD — 7
1.6.1	Cardiovascular imaging — 7
1.6.2	Echocardiography —— 8
1.6.3	Magnetic resonance imaging —— 9
1.6.4	Cardiac computed tomography —— 9
1.6.5	Electrocardiography —— 10
1.6.6	Nuclear cardiology —— 10
1.6.7	Angiography imaging —— 11
1.6.8	Intravascular imaging —— 11
1.7	AI-based wearables in cardiovascular care —— 12
1.7.1	Heart rate and rhythm sensors —— 12
1.7.2	Monitoring for hypertension —— 13
1.7.3	Monitoring of atrial fibrillation and other arrhythmias —— 15
1.7.4	Monitoring of heart failure —— 15
1.8	AI and data management —— 16
1.9	Conclusion —— 17
	References —— 17

Chapter 2

Integration of AI in the management of bone health —— 23

- 2.1 Introduction —— **23**
- 2.2 Applications of AI in medical imaging —— 25

2.3	Application of AI in orthopedics —— 25
2.3.1	Natural language processing (NLP) —— 25
2.3.2	Clinical prediction rule —— 26
2.3.3	Outcome calculator —— 26
2.4	Workflow of ML in orthopedics —— 28
2.4.1	Predictive modeling: development of an ML algorithm —— 28
2.4.2	External validation —— 30
2.4.3	Evaluation and implementation —— 31
2.4.4	Improvement of the algorithm: continuous self-learning —— 32
2.5	Role of AI in bone fracture detection —— 32
2.5.1	Data preprocessing —— 33
2.5.2	Bone fracture —— 33
2.5.3	Computer vision for fracture recognition —— 34
2.6	Different techniques of AI in bone fracture detection —— 35
2.6.1	Primary machine learning-based algorithm —— 35
2.6.2	Ensemble-based classification system —— 36
2.6.3	Deep learning —— 37
2.7	Value of deep learning in radiology/orthopedic traumatology —— 40
2.7.1	Combining deep learning with a radiomics approach —— 41
2.8	Role of AI in bone cancer —— 41
2.8.1	AI in bone cancer detection —— 43
2.9	Methods for the detection of cancer —— 44
2.9.1	Steps of cancer diagnosis in medical imaging —— 44
2.9.1.1	Image acquisition methods —— 44
2.9.1.2	Preprocessing —— 44
2.9.1.3	Segmentation —— 45
2.9.1.4	Feature detection —— 45
2.9.1.5	Classification —— 45
2.9.1.6	Image visualization —— 46
2.10	Conclusion —— 46
	References —— 46
Chapter 3	
AI for remo	te patient monitoring in healthcare —— 53
3.1	Introduction —— 53
3.2	Introduction to remote patient monitoring —— 55
3.3	Improving therapeutic outcomes via RPM —— 56
3.4	Remote patient monitoring architectures —— 57
3.4.1	Video-based monitoring —— 58
3.4.2	IoT-enabled devices —— 59
3.4.3	Cloud computing —— 60
3.4.4	Fog and edge computing —— 60

3.4.5	Blockchain monitoring —— 61
3.5	Application of artificial intelligence in RPM —— 62
3.5.1	Sensors, smartphones, apps, and devices for RPM —— 62
3.5.2	Clinical decision support-based RPM —— 64
3.6	Others applications of AI in RPM —— 66
3.6.1	Monitoring of vital signs —— 66
3.6.2	Physical activities monitoring —— 68
3.7	AI-based RPM for chronic disease monitoring —— 69
3.7.1	Diabetes monitoring —— 69
3.7.2	Cardiac monitoring —— 70
3.7.3	"Big data" for predictive analysis —— 71
3.7.4	Mental health monitoring —— 72
3.7.5	Dementia monitoring —— 73
3.7.6	Migraine monitoring —— 75
3.7.7	Monitoring in emergency department —— 76
3.7.8	Monitoring in the ICU —— 77
3.7.9	Facial and emotional recognition —— 78
3.7.10	Role in early detection of patient deterioration —— 78
3.7.11	Personalized monitoring for patient —— 80
3.8	Conclusion —— 81
	References —— 81
Chapter 4	
Engaging A	I in emergency medicine for better patient care —— 91
4.1	Introduction —— 91
4.2	What is AI? —— 92
4.3	Difference between ML and DL —— 94
4.4	Machine learning algorithms in clinical research —— 94
4.5	Role of AI in emergency medicine —— 96
4.5.1	Role in triage and disposition —— 96
4.5.2	Role in ED operations —— 96
4.5.3	Role in emergency department operations and management —— 97
4.5.4	Role in medical imaging —— 98
4.5.5	Role in clinical image analysis —— 98
4.5.6	Role in predictive modeling —— 98
4.5.7	Role in clinical monitoring —— 100
4.5.8	Role in patient monitoring —— 100
4.5.9	Role in home monitoring of patient —— 101
4.5.10	Role in causal inference, risk, prediction, and metrics —— 101
4.6	Conclusion —— 102

References —— 103

	Chapter	5
	Applicati	on of AI in ENT (otorhinolaryngology) care —— 109
	5.1	Introduction —— 109
	5.2	Machine learning and deep learning —— 110
	5.3	Role of AI in audiology —— 111
	5.4	Role of AI in otology —— 113
	5.5	AI-based surgical and training applications in otology —— 113
	5.6	Role of AI in rhinology —— 114
	5.7	Role of AI in laryngology —— 114
	5.8	Role of AI in head-and-neck oncology —— 115
	5.9	Role of AI in augmenting tele-otoscopy —— 117
	5.10	Operation-based use of otoscopes in the telehealth setting —— 119
	5.10.1	Guardian-operated —— 119
	5.10.2	Healthcare-provider-operated —— 120
	5.11	Conclusion —— 121
		References —— 122
	Chapter	6
	Integrati	on of AI in brain tumor surgery —— 125
	6.1	Introduction —— 125
	6.2	General applications of AI in surgery —— 127
	6.2.1	Automated identification of surgical phases —— 127
	6.2.2	Automated identification of instruments —— 129
	6.3	Role of AI in brain tumor surgery —— 130
	6.3.1	Preoperative phase —— 131
	6.3.1.1	Screening and diagnosis —— 131
	6.3.1.2	Planning —— 133
	6.3.2	Intraoperative phase —— 135
	6.3.2.1	Tumor tissue identification —— 135
	6.3.2.2	Workflow —— 136
	6.3.3	Postoperative phase —— 138
	6.3.3.1	Inpatient and acute care —— 138
	6.3.3.2	Outpatient and oncological care —— 139
	6.4	Conclusion —— 141
		References —— 142
	Chapter :	7
	AI in den	tistry: role and application —— 155
	7.1	Introduction —— 155
	7.2	AI in dentistry —— 156
	7.3	AI in operative dentistry —— 156
,	7.4	AI in periodontics —— 157

7.5	AI in orthodontics —— 158
7.6	AI in oral and maxillofacial pathology —— 159
7.7	AI in prosthodontics —— 161
7.8	AI in endodontics —— 162
7.8.1	Periapical lesions detection —— 162
7.8.2	Root fracture detection —— 163
7.8.3	Determination of working length —— 164
7.8.4	Morphology of root and root canal system —— 164
7.8.5	Retreatment predictions —— 165
7.8.6	Prediction of the viability of stem cells —— 165
7.9	Other dental applications of AI —— 166
7.9.1	In dental education —— 166
7.9.2	For patient management —— 166
7.9.3	For diagnosis, treatment, and prognosis —— 167
7.9.4	In dental radiology —— 167
7.9.5	In prosthetic dentistry —— 167
7.9.6	In forensic odontology —— 168
7.9.7	Applications in orthognathic surgery —— 168
7.10	Application in maxillofacial imagery —— 170
7.10.1	Acquisition —— 170
7.10.2	Interpretation —— 170
7.10.3	Treatment planning —— 171
7.10.4	Custom orthodontic and surgical appliances —— 171
7.10.5	Treatment follow-up —— 172
7.11	Conclusion —— 173
	References —— 173
Chapter 8	
•	OPD with AI: implementation and utilization —— 181
8.1	Introduction —— 181
8.2	What is AI? —— 183
8.3	Incorporation of AI in healthcare delivery —— 183
8.3.1	Healthcare administration —— 183
8.3.2	Clinical decision support system (CDSS) —— 184
8.3.3	Patient monitoring —— 185
8.3.4	Healthcare interventions —— 186
8.4	Application of artificial intelligence for patients —— 187
8.4.1	AI in predicting patient flow —— 188
8.4.2	Patient flow prediction models —— 189
8.4.3	AI for improving operational efficiency —— 190
8.5	Modern technologies and frameworks in smart healthcar
	systems —— 191

8.5.1	Internet of things-based smart healthcare systems —— 192
8.5.2	Artificial intelligence in smart healthcare systems —— 193
8.5.3	Blockchain-enabled healthcare systems —— 195
8.5.4	Cloud computing technology for healthcare —— 196
8.6	Conclusion —— 197
	References —— 198
Chapter 9	
Elder patier	nt care and monitoring through AI —— 203
9.1	Introduction —— 203
9.2	Introduction to artificial intelligence —— 204
9.3	AI for care of older people —— 204
9.4	AI based monitoring for older adults —— 207
9.5	Using AI to improve patient care and health outcomes —— 209
9.6	IoT and IoT-based technologies —— 210
9.6.1	Activity recognition —— 211
9.6.2	Wearable systems —— 213
9.7	Incorporating robots for elder care —— 214
9.7.1	Solutions for physical and functional challenges —— 214
9.7.2	Solutions for cognitive challenges —— 215
9.8	Other applications of AI in healthcare management of elderly
	people —— 216
9.8.1	IoT for data acquisition —— 216
9.8.2	Medication and healthcare assistance robots —— 218
9.8.3	Robotics for psychological issues —— 219
9.9	Conclusion —— 220
	References —— 221
Chapter 10	
AI and preg	nancy: an unexpected alliance —— 227
10.1	Introduction —— 227
10.2	AI and pregnancy —— 229
10.3	Utilization of AI to understand maternal and fetal health —— 231
10.3.1	Assisted reproductive technologies —— 231
10.3.2	Developmental toxicology —— 233
10.4	AI-based chronic disease management in pregnancy —— 234
10.5	Pregnancy-induced disease —— 234
10.5.1	Disease screening —— 235
10.5.2	Disease management with clinical decision support systems —— 237
10.6	Labor analgesia —— 238
10.7	Mode of delivery —— 238
10.7.1	Predict postpartum disease —— 239

10.8	Pharmacologics and pregnancy —— 239
10.9	Conclusion —— 241
	References —— 241

Chapter 11

Implementation of AI in pathology —— 247

11.1	Introduction —— 247
11.2	AI and digital image analysis —— 251
11.3	AI to support routine pathological diagnosis —— 253
11.4	Applications of AI in pathology: the current perspective —— 254
11.4.1	Improve workflow efficacy —— 254
11.4.2	Consistency of assessments —— 255
11.4.3	IHC analysis —— 256
11.4.4	Improving accuracy in cell counting —— 256
11.5	Other applications of AI in pathology —— 257
11.5.1	AI-assisted image analysis for prognosis prediction —— 257
11.5.2	AI-based analysis of genetic data —— 258
11.5.3	Integration of histomorphological, molecular pathological, and
	oncological data —— 258
11.6	Incorporation of AI-based digital pathology —— 259
11.7	Digital pathology and computer-aided pathology —— 259
11.8	Application of digital pathology —— 260
11.9	Using a digital pathology system in a clinical setting —— 261
11.10	Conclusion —— 262
	References —— 263

Index — 269