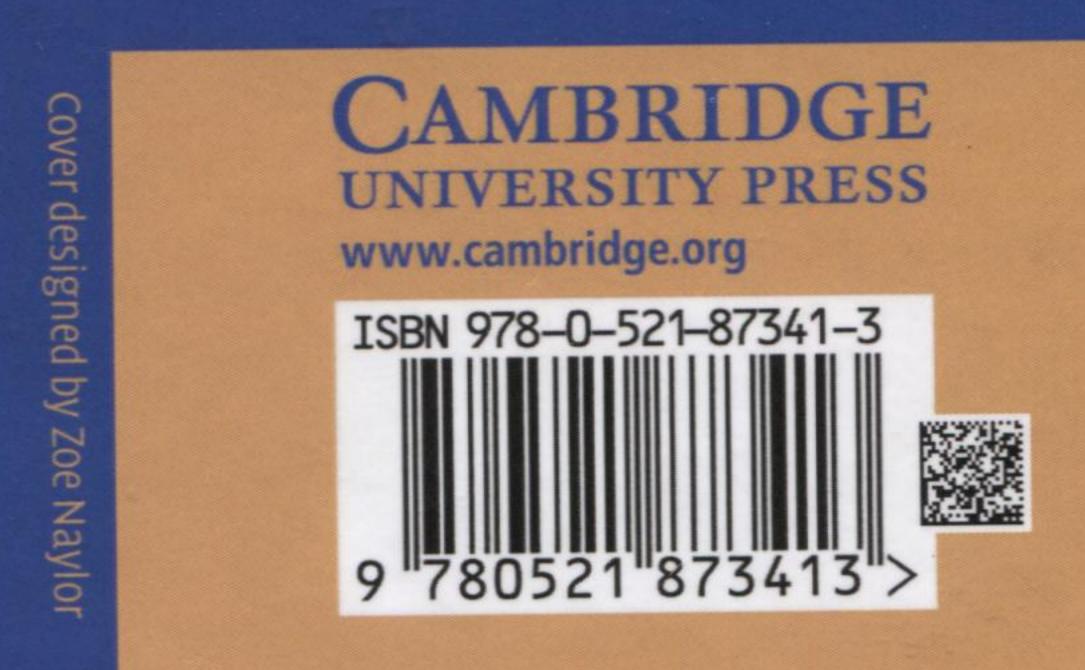

While many scientists are familiar with fractals, fewer are cognizant of the concepts of scale-invariance and universality which underlie the ubiquity of such fascinating shapes. These inherent properties emerge from the collective behavior of simple fundamental constituents. The initial chapters smoothly connect the particulate perspective developed in the companion volume, Statistical Physics of Particles, to the coarse-grained statistical fields studied in this textbook. It carefully demonstrates how such theories are constructed from basic principles such as symmetry and locality, and studied by innovative methods

like the renormalization group. Perturbation theory, exact solutions, renormalization, and other tools are employed to demonstrate the emergence of scale invariance and universality. The book concludes with chapters related to the research of the author on non-equilibrium dynamics of interfaces, and directed paths in random media.

Covering the more advanced applications of statistical mechanics, this textbook is ideal for advanced graduate students in physics. It is based on lectures for a course in statistical physics taught by Professor Kardar at Massachusetts Institute of Technology (MIT). The large number of integrated problems introduce the reader to

In this much-needed modern text, Kardar presents a remarkably clear view of statistical mechanics as a whole, revealing the relationships between different parts of this diverse subject. In two volumes, the classical beginnings of thermodynamics are connected smoothly to a thoroughly modern view of fluctuation effects, stochastic dynamics, and renormalization and scaling theory. Students will appreciate the precision and clarity in which difficult concepts are presented in generality and by example. I particularly like the wealth of interesting and instructive problems inspired by diverse phenomena throughout physics (and beyond!), which illustrate the power and broad applicability of statistical mechanics. Leon Balents, Department of Physics, University of California, Santa Barbara


... Statistical Physics of Particles is the welcome result of an innovative and popular graduate course Kardar has been teaching at MIT for almost 20 years. It is a masterful account of the essentials of a subject which played a vital role in the development of twentieth-century physics ... Statistical Physics of Fields builds on the foundation laid by the Statistical Physics of Particles, with an account of the revolutionary developments of the past 35 years, many of which were facilitated by renormalization group ideas. Much of the subject matter is inspired by problems in condensed matter physics, with a number of pioneering contributions originally due to Kardar himself. David R. Nelson, Arthur K. Solomon Professor of Biophysics, Harvard University

If Landau and Lifshitz were to prepare a new edition of their classic statistical physics text they might produce a book not unlike this gem by Mehran Kardar. Indeed, Kardar is an extremely rare scientist, being both brilliant in formalism and an astoundingly careful and thorough teacher. He demonstrates both aspects of his range of talents in this pair of books, which belong on the bookshelf of every serious student of theoretical statistical physics.

H. Eugene Stanley, Director, Center for Polymer Studies, Boston University

This is one of the most valuable textbooks I have seen in a long time. Written by a leader in the field, it provides a crystal clear, elegant and comprehensive coverage of the field of statistical physics. I'm sure this book will become the reference for the next generation of researchers, students and practitioners in statistical physics. I wish I had this book when I was a student, but I will have the privilege to rely on it for my teaching.

Alessandro Vespignani, Center for Biocomplexity, Indiana University

Preface	e ix
1 Collective behavior, from particles to fields	1
1.1 Introduction	1
1.2 Phonons and elasticity	3
1.3 Phase transitions	9
1.4 Critical behavior	11
Problems	14
Models and methods signs (
2 Statistical fields	19
2.1 Introduction	19
2.2 The Landau-Ginzburg Hamiltonian	21
2.3 Saddle point approximation, and mean-field theory	24
2.4 Continuous symmetry breaking and Goldstone modes	29
2.5 Discrete symmetry breaking and domain walls	31
Problems	32
3 Fluctuations	35
3.1 Scattering and fluctuations	35
3.2 Correlation functions and susceptibilities	37
3.3 Lower critical dimension	39
3.4 Comparison to experiments	42
3.5 Gaussian integrals	43
3.6 Fluctuation corrections to the saddle point	45
3.7 The Ginzburg criterion	47
Problems	48
4 The scaling hypothesis	54
4.1 The homogeneity assumption	54
4.2 Divergence of the correlation length	57
4.3 Critical correlation functions and self-similarity	59
4.4 The renormalization group (conceptual)	60

4.5 The renormalization group (formal)	63
4.6 The Gaussian model (direct solution)	66
4.7 The Gaussian model (renormalization group)	68
Problems	70
5 Perturbative renormalization group	73
5.1 Expectation values in the Gaussian model	73
5.2 Expectation values in perturbation theory	74
5.2 Diagrammatic representation of perturbation theory	76
5.4 Susceptibility	78
5.5 Perturbative RG (first order)	80
5.6 Perturbative RG (second order)	84
5.7 The ϵ -expansion	87
5.8 Irrelevance of other interactions	90
5.9 Comments on the ϵ -expansion	92
Problems	93
6 Lattice systems	98
6.1 Models and methods	98
6.2 Transfer matrices	101
6.3 Position space RG in one dimension	104
6.4 The Niemeijer-van Leeuwen cumulant approximation	108
6.5 The Migdal–Kadanoff bond moving approximation	112
6.6 Monte Carlo simulations	114
Problems	117
Problems	
7 Series expansions	123
7.1 Low-temperature expansions	123
7.1 Low-temperature expansions 7.2 High-temperature expansions	125
7.2 High-temperature expansions 7.3 Exact solution of the one-dimensional Ising model	127
7.3 Exact solution of the one dimensional Ising model 7.4 Self-duality in the two-dimensional Ising model	128
7.4 Schr-duality in the two difficulties and Ising model 7.5 Dual of the three-dimensional Ising model	130
7.5 Dual of the timee difficultional foliage from 7.6 Summing over phantom loops	133
	140
7.7 Exact free chergy of the square factor is a square factor of the factor of the two-dimensional Ising model	146
Problems	148
1 TOUTONS	
8 Beyond spin waves	156
8.1 The nonlinear σ model	156
8.2 Topological defects in the XY model	162
8.3 Renormalization group for the Coulomb gas	168
0.0 1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.	

8.4 Two-dimensional solids

8.5	Two-dimensional melting	177
Proble		181
9 D	issipative dynamics	188
9.1	Brownian motion of a particle	188
9.2	Equilibrium dynamics of a field	192
9.3	Dynamics of a conserved field	194
9.4	Generic scale invariance in equilibrium systems	196
9.5	Non-equilibrium dynamics of open systems	200
9.6	Dynamics of a growing surface	204
	sejentists and non-scientists are familiar with fractals, abstract	
10 D	irected paths in random media	209
10.1	Introduction	209
10.2	High-T expansions for the random-bond Ising model	210
10.3	The one-dimensional chain	213
10.4	Directed paths and the transfer matrix	216
10.5	Moments of the correlation function	221
10.6	The probability distribution in two dimensions	226
10.7	Higher dimensions	229
10.8	Random signs	233
10.9	Other realizations of DPRM	237
10.10	Quantum interference of strongly localized electrons	241
10.11	The locator expansion and forward scattering paths	244
10.12	Magnetic field response	247
10.13	Unitary propagation	252
10.14	Unitary averages	255
Soluti	ions to selected problems	260
Chapt	er 1	260
Chapt	ter 2	268
Chapt	ter 3	278
Chapter 4		
Chapter 5		298
Chapter 6		317
Chapter 7		
Chapt	ter 8	343
Index	Large I developed a large number of problems fand solution	357

been integrated into the text. Following each chapter those are two sets of