Statistical physics has its origins in attempts to describe the thermal properties of matter in terms of its constituent particles, and has played a fundamental role in the development of quantum mechanics. It describes how new behavior emerges from interactions of many degrees of freedom, and as such has found applications outside physics in engineering, social sciences, and, increasingly, in biological sciences. This textbook introduces the central concepts and tools of statistical physics. It includes a chapter on probability and related issues such as the central limit theorem and information theory not usually covered in existing texts. The book also covers interacting particles, and includes an

extensive description of the van der Waals equation and its derivation by mean-field approximation. A companion volume, Statistical Physics of Fields, discusses non-mean-field aspects of scaling and critical phenomena, through the perspective of the renormalization group.

Based on lectures for a course in statistical mechanics taught by Professor Kardar at Massachusetts Institute of Technology (MIT), this textbook contains an integrated set of problems, with solutions to selected problems at the end of the book. It will be invaluable for graduate and advanced undergraduate courses in statistical physics. Additional solutions are available to lecturers on a password-protected website at www.cambridge.org/9780521873420.

In this much-needed modern text, Kardar presents a remarkably clear view of statistical mechanics as a whole, revealing the relationships between different parts of this diverse subject. In two volumes, the classical beginnings of thermodynamics are connected smoothly to a thoroughly modern view of fluctuation effects, stochastic dynamics, and renormalization and scaling theory. Students will appreciate the precision and clarity in which difficult concepts are presented in generality and by example. I particularly like the wealth of interesting and instructive problems inspired by diverse phenomena throughout physics (and beyond!), which illustrate the power and broad applicability of statistical mechanics. Leon Balents, Department of Physics, University of California, Santa Barbara

... Statistical Physics of Particles is the welcome result of an innovative and popular graduate course Kardar has been teaching at MIT for almost 20 years. It is a masterful account of the essentials of a subject which played a vital role in the development of twentieth-century physics ... Statistical Physics of Fields builds on the foundation laid by the Statistical Physics of Particles, with an account of the revolutionary developments of the past 35 years, many of which were facilitated by renormalization group ideas. Much of the subject matter is inspired by problems in condensed matter physics, with a number of pioneering contributions originally due to Kardar himself. David R. Nelson, Arthur K. Solomon Professor of Biophysics, Harvard University

If Landau and Lifshitz were to prepare a new edition of their classic statistical physics text they might produce a book not unlike this gem by Mehran Kardar. Indeed, Kardar is an extremely rare scientist, being both brilliant in formalism and an astoundingly careful and thorough teacher. He demonstrates both aspects of his range of talents in this pair of books, which belong on the bookshelf of every serious student of theoretical statistical physics. H. Eugene Stanley, Director, Center for Polymer Studies, Boston University

This is one of the most valuable textbooks I have seen in a long time. Written by a leader in the field, it provides a crystal clear, elegant and comprehensive coverage of the field of statistical physics. I'm sure this book will become the reference for the next generation of researchers, students and practitioners in statistical physics. I wish I had this book when I was a student, but I will have the privilege to rely on it for my teaching. Alessandro Vespignani, Center for Biocomplexity, Indiana University

CAMBRIDGE UNIVERSITY PRESS www.cambridge.org

ISBN 978-0-521-87342-0

9 780521 873420">

ver designed by Loe Nay

Preface		pag	e ix
1 T	hermodynamics		1
1.1	Introduction		1
1.2	The zeroth law		2
1.3	The first law		5
1.4	The second law		8
1.5	Carnot engines		10
1.6	Entropy	The cumulant expansion	13
1.7	Approach to equilibrium and there	modynamic potentials	16
1.8	Useful mathematical results		20
1.9	Stability conditions		22
1.10	The third law		26
Prob	lems		29
		Corresponding states	
2 Pr	obability		35
2.1	General definitions		35
2.2	One random variable		36
2.3	Some important probability distrib	outions	40
2.4	Many random variables		43
2.5	Sums of random variables and the	e central limit theorem	45
	Rules for large numbers		47
2.7	Information, entropy, and estimati	on	50
Prob			52
		amold amold	
	netic theory of gases		57
3.1	General definitions		57
3.2	Liouville's theorem		59
3.3	The Bogoliubov-Born-Green-Kir	kwood-Yvon hierarchy	62
3.4	The Boltzmann equation		65
3.5	The H-theorem and irreversibility	Grand canonical tormulation	71
3.6	Equilibrium properties		75
3.7	Conservation laws	The degenerate fermt gas	78

3.8	Zeroth-order hydrodynamics	82
3.9	First-order hydrodynamics	84
Pro	blems	87
4 (Classical statistical mechanics	98
	General definitions	98
4.2	The microcanonical ensemble	98
	Two-level systems	102
	The ideal gas	105
4.5	Mixing entropy and the Gibbs paradox	107
4.6	The canonical ensemble	110
4.7	Canonical examples	113
4.8	The Gibbs canonical ensemble	115
4.9	The grand canonical ensemble	118
Pro	blems	120
5 I	ntorocting norticles	126
	Interacting particles The cumulant expansion	126
		126
	The cluster expansion The second virial coefficient and van der Waals equation	130
	Breakdown of the van der Waals equation	139
	Mean-field theory of condensation	141
	Variational methods	143
	Corresponding states	145
	Critical point behavior	146
	hlama	148
110		
	Quantum statistical mechanics	156
	Dilute polyatomic gases	156
	Vibrations of a solid	161
	Black-body radiation	167
	Quantum microstates	170
	Quantum macrostates	172
Pro	blems	175
7 I	deal quantum gases	181
	Hilbert space of identical particles	181
	Canonical formulation	184
	Grand canonical formulation	187
7.4	Non-relativistic gas	188
7.5	The degenerate fermi gas	190

7.6 The degenerate bose gas	194
7.7 Superfluid He ⁴	198
Problems	202
Solutions to selected problems	211
Chapter 1	211
Chapter 2	224
Chapter 3	235
Chapter 4	256
Chapter 5	268
Chapter 6	285
Chapter 7	300
Index	318
also played a finadamental role in the development of a	