An anomaly is the failure of classical symmetry to survive the process of quantization and regularization. The study of anomalies is the key to a deeper understanding of quantum field theory and has played an increasingly important role in the theory over the last 20 years. This text presents all the different aspects of the study of anomalies in an accessible and self-contained way. Much emphasis is now being placed on the formulation of the theory using mathematical ideas of differential geometry and topology. This approach is followed here, and the derivations and calculations are given explicitly as an aid to students.

The comprehensive overview of the theory presented in this book will be useful to both students and researchers.

Professor Bertlmann is at the Institute for Theoretical Physics, University of Vienna.

From reviews of the hardback edition

It is a leisurely and scholarly treatment of the whole subject from the ground up.... Besides being comprehensive, the book manages to convey the depth and breadth of this profound subject as well as its links to mathematics. It is bound to become a standard reference on this fascinating topic.

R. Shankar, Physics Today

I am not aware of another book which deals with this ambitious topic in as thorough and up-to-date a fashion as this present volume. I recommend it without reservation both as an introduction and as a reference for experts.

H. Nicolai, Physikalische Blätter

Modern differential geometry and functional analysis have forged the tools for a deeper understanding in theoretical physics. Bertlmann's book does not only give the mathematical background but also illustrates these notions by subtle features of modern quantum field theory.

Professor W. Thirring, Erwin-Schrödinger-Institut, Vienna

... an excellent guide to many aspects of anomalies. Professor Bertlmann surveys the basis for the unexpected effects and he puts forward evidence that not only the theoretical physicist but also Nature knows and uses the anomalous symmetry breaking mechanism. Moreover, he presents the relevant concepts of geometry and topology in a detailed and explicit fashion, thereby providing a most useful and practical introduction to these topics in contemporary mathematics.

Professor R. Jackiw, MIT

1	Intr	oducti	on	1
2	Diff	erentia	al geometry, topology and fibre bundles	9
	2.1	Topolo	ogy	10
	2.2	Homot	topy	13
		2.2.1	Homotopy of maps	14
		2.2.2	Homotopy groups	18
	2.3	Differe	entiable manifolds	29
	2.4	Differe	ential forms	40
	2.5	Homol	logy and de Rham cohomology	58
		2.5.1	Homology	58
		2.5.2	de Rham cohomology	67
	2.6	Flow,	Lie derivative and Lie group	73
		2.6.1	Differential map	73
			Pullback	76
		2.6.3	Flow	78
			Lie derivative of a vector field	81
			Lie derivative of a differential form	84
	0.7		Lie group and Lie algebra	88
	2.7		bundles	95
			Bundle set-up	95
		2.7.2	Connection	105
		2.1.3	Curvature	113
3	Path	integr	rals, FP method and BRS transformation	118
	3.1		um mechanics	118
		3.1.1	Propagator	118
		3.1.2	Typical examples for the propagator	120
		3.1.3	Feynman's path integral	124
		3.1.4	Connection between Lagrange- and Hamilton	
			formalism	126
		3.1.5	Field theory analogies	129

	3.2	Scalar field theory	135
		3.2.1 Free scalar fields	135
		3.2.2 Free Green functions	139
		3.2.3 Interacting fields	142
		3.2.4 Green functions for interacting fields	144
		3.2.5 Connected Green functions	147
	3.3	Fermion field theory	149
		3.3.1 Grassmann algebra	149
		3.3.2 Dirac fields	154
	3.4	Abelian gauge fields	156
	3.5	Faddeev-Popov method for non-Abelian gauge fields	159
		3.5.1 Yang-Mills theory	159
		3.5.2 Faddeev-Popov determinant and ghosts	165
	3.6	BRS transformation	172
1	Ano	malies in QFT	177
	4.1	Classical conservation laws and symmetries	177
		4.1.1 Abelian fields	177
		4.1.2 Non-Abelian fields	180
	4.2	Ward identities and anomaly	185
		4.2.1 Green functions	185
		4.2.2 Generating functional	191
	4.3	ABJ anomaly calculations	197
		4.3.1 Triangle graph regularization	197
		4.3.2 Pauli-Villars regularization	205
		4.3.3 <i>n</i> -dimensional 't Hooft-Veltman regularization	210
		4.3.4 Singular current operator	214
	4.4	2-dimensional anomaly and dispersion relations 4.4.1 Ward identities	215
		4.4.1 Ward identities 4.4.2 n-dimensional regularization procedure	220
	15	The anomaly and the Dirac sea	227
		Decay $\pi^0 \to \gamma \gamma$ and PCAC	233
			238
		Singlet anomaly Non-Abelian anomaly Bardson's result	241
		Non-Abelian anomaly—Bardeen's result	244
	4.9	Importance of anomalies	244
5	Pat	h integral and anomaly	249
	5.1	Fermionic measure and chiral transformation	249
	5.2	Fujikawa's method and singlet anomaly	255
	5.3	2-dimensional anomaly	260

	5.4	Regularization independence of the anomaly	261
	5.5	Fujikawa's uncertainty principle	263
	5.6	Non-Abelian anomaly	265
	5.7	Heat kernel and zeta function regularization	272
		5.7.1 Heat kernel regularization	273
		5.7.2 Zeta function regularization	277
6	Phy	sics in terms of differential forms	287
	6.1	Abelian fields, electrodynamics	287
	6.2.	Non-Abelian fields, Yang-Mills theory	293
	6.3	Anomalies	296
	6.4	Dirac monopole	297
	6.5	Aharonov–Bohm effect	306
	6.6	Instantons	311
7		rn-Simons form, homotopy operator and anomaly	321
	7.1	Invariant polynomials	321
	7.2	Transgression formula and Chern-Simons form	325
	7.3	Poincaré lemma and homotopy operator	328
	7.4	Cartan homotopy formula	333
	7.5	Chern-Simons form, gauge transformations and anomaly	335
	7.6	Chern-Simons form, variations and anomaly	339
8	Con	sistent anomaly	342
	8.1	Infinitesimal gauge operator, BRS and geometry	342
	8.2	Wess-Zumino consistency condition	350
	8.3	Algebra, cocycles and cohomology	356
		8.3.1 Faddeev-Popov ghosts and gauge elements	356
		8.3.2 Algebra 8.3.2 Correla	358
		8.3.3 Cocycle 8.3.4 Cohomology	360 363
		moitos ainginnsa A.I.I	303
9	Stor	a-Zumino chain of descent equations	366
	9.1	Stora's approach to the chain	366
	9.2	Chain for nontrivial gauge bundles	370
	9.3	Zumino's approach to the chain	372
	9.4	Explicit solutions for the chain terms	381
	9.5	Zumino's formulae for chain terms	384

10	Covariant anomaly	390
	10.1 Bardeen-Zumino polynomial and covariant anomaly	390
	10.2 Covariant anomaly and differential forms	395
	10.3 Geometry in the space of gauge potentials	400
	10 1 37 1 1	405
11	Index and anomaly	408
	11.1 Singlet anomaly and index	408
	11.2 Fredholm and elliptic operators and index theory	412
	11.3 Heat kernel and index	422
	11.4 Atiyah-Singer index theorem	425
		427
	11 - 0 1	427
		432
	11.5.3 Alvarez-Gaumé and Ginsparg's index procedure	436
12		451
		452
	1010	452
200	1010 01	458
	1011 77	160
	101 - 0 1 1 1	465 468
	100 7	176
	1001 77 11 .	176
	10000	179
		182
		187
		190
		191
	1000 0	191
	10 1 D	193
		196
	10 F 1 T	502
	10 F 0 Ti	503
	10 F 0 TT7 1	06
	1000	06
	10 C 1 T' ' T	08
	10000	11
		TT

Contents	xiii
12.6.3 Equivalence of Einstein- and Lorentz anomaly	515
12.6.4 Covariant gravitational anomaly	518
12.7 BRS algebra and descent equations	520
12.7.1 BRS algebra	520
12.7.2 Descent equations	525
12.7.3 BRS for nontrivial fibre bundles	528
12.8 Index theorem for gravitation	531
12.8.1 Alvarez-Gaumé and Ginsparg's index procedure	532
12.8.2 Examples in two dimensions	537
12.8.3 Mixed anomalies	541
12.8.4 Axial gravitational anomaly	542
Bibliography	
Index	557