INSTITUTE OF PHYSICS

SERIES IN HIGH ENERGY PHYSICS, COSMOLOGY AND GRAVITATION

SERIES EDITORS: B FOSTER, L GRISHCHUK, E W KOLB, M A H MACCALLUM, D H PERKINS AND B F SCHUTZ

This series of books covers all aspects of theoretical and experimental high energy physics, cosmology and gravitation, and the interfaces between them. In recent years the fields of particle physics and astrophysics have become increasingly interdependent. The aim of this Series is to provide a library of books to meet the needs of students and researchers in these fields.

Branes are solitonic configurations of a string theory, which are represented by extended objects in (a higher-dimensional) spacetime. They are essential for a comprehension of the non-perturbative aspects of string theory, in particular in connection with string dualities. From the mathematical viewpoint, they are related to several important theories, such as homological mirror symmetry and quantum cohomology.

This book, based on lectures given to postgraduate students, provides an introduction to current research in some of these different areas, both in physics and mathematics. The book opens with a lucid introduction to the basic aspects of branes in string theory. Topics covered in subsequent chapters include tachyon condensation, the geometry surrounding the Gopakumar–Vafa conjecture (a duality between the SU(N) Chern–Simons theory on S3 and a IIA string theory compactified on a Calabi–Yau 3-fold), two-dimensional conformal field theory on open and unoriented surfaces, and the development of homology theory naturally attached to the deformations of vector bundles which should be relevant to the study of homological mirror symmetry.

The book will be useful for graduate students and for researchers in mathematics and theoretical physics who want to enter this exciting and challenging field.

Institute of Physics Publishing Bristol and Philadelphia www.iop.org

	Pref	ace		ix
			tary introduction to branes in string theory	1
1	Intr	oductio		3
2	Bra	nes in s	tring theory	6
	2.1	The su	perstring effective actions of type II	6
			Type IIA	6
		2.1.2	Type IIB	8
	2.2	Gener	al construction	11
	2.3	Explic	cit solutions	13
		2.3.1	Fundamental string	13
		2.3.2	NS 5-brane	14
		2.3.3	Dp-branes	16
		2.3.4	The geometry of the D3-brane of type IIB	18
3	The	bounda	ary state description of D-branes	21
	3.1	The bo	oundary state with an external field	21
4	The	effectiv	ve action of D-branes	25
5	Clas	ssical D	-branes from the boundary state	30
	Refe	erences		35

	Phy	rsical aspects sen Stanev, César Gómez and Pedro Resco	37		
6					
U	Two-dimensional conformal field theory on open and unoriented surfaces				
	6.1	Introduction	39		
	6.2	General properties of two-dimensional CFT	39		
	0.2	6.2.1 The stress–energy tensor in two dimensions	40		
		6.2.2 Rational conformal field theories	40		
		6.2.3 Non-Abelian conformal current algebras	44		
		6.2.4 Partition function, modular invariance	46		
	6.3	Correlation functions in current algebra models	48		
	0.5	6.3.1 Properties of the chiral conformal blocks	51		
		6.3.2 Regular basis of 4-point functions in the $SU(2)$ model	51		
		6.3.3 Matrix representation of the exchange algebra	53		
		6.3.4 Two-dimensional braid invariant Green functions	55 57		
	6.4	CFT on surfaces with holes and crosscaps	60		
		6.4.1 Open sector, sewing constraints	61		
		6.4.2 Closed unoriented sector, crosscap constraint	69		
	6.5	Partition functions	73		
		6.5.1 Klein bottle projection	73		
		6.5.2 Annulus partition function	75		
		6.5.3 Möbius strip projection	77		
		6.5.4 Solutions for the partition functions	79		
		Acknowledgments	82		
	Pofe	erences			
0	Kere	elettes	83		
7	Topi	ics in string tachyon dynamics	86		
	7.1	Introduction	86		
		Why tachyons?	88		
	7.3	1.3 Tachyons in AdS: The $c = 1$ barrier			
	7.4	.4 Tachyon σ -model beta-functions			
	7.5	Open strings and cosmological constant: the Fischler-Susskind			
		mechanism	92		
		7.5.1 Fischler–Susskind mechanism: closed-string case	92		
		7.5.2 Open-string contribution to the cosmological constant:			
	7.	the filling brane	95		
	7.6	The effective action	97		
		7.6.1 A warming-up exercise	97		
		7.6.2 The effective action	99		
	7.7	7.6.3 Non-critical dimension and tachyon condensation	103		
	7.7	D-branes, tachyon condensation and K-theory	105		
		7.7.1 Extended objects and topological stability	105		

			Contents	VII
		7.7.2	A gauge theory analogue for D-branes in type II strings	105
			K-theory version of Sen's conjecture	107
			Type IIA strings	109
	7.8		final comments on gauge theories	114
		Ackno	wledgments	114
	Refe	erences		115
	PAR	Т3		
			cal developments	
	Kenj	ii Fukay	va, Antonella Grassi and Michele Rossi	119
8	Defo	rmatio	n theory, homological algebra and mirror symmetry	121
	8.1	Introdu	uction	121
	8.2	Classic	cal deformation theory	125
		8.2.1	Holomorphic structure on vector bundles	125
		8.2.2	Families of holomorphic structures on vector bundles	128
		8.2.3	Cohomology and deformations	130
		8.2.4	Bundle valued harmonic forms	134
		8.2.5	Construction of a versal family and Feynman diagrams	136
		8.2.6	The Kuranishi family	140
		8.2.7	Formal deformations	146
	8.3		logical algebra and deformation theory	152
			Homotopy theory of A_{∞} and L_{∞} algebras	152
			Maurer-Cartan equation and moduli functors	159
		8.3.3	Canonical model, Kuranishi map and moduli space	163
		8.3.4	Superspace and odd vector fields—an alternative formu-	
			lation of L_{∞} algebras	172
	8.4	8.4 Application to mirror symmetry		173
		8.4.1	Novikov rings and filtered A_{∞} , L_{∞} algebras	173
		8.4.2		176
		8.4.3	From Lagrangian submanifold to A_{∞} algebra	183
		8.4.4	Maurer–Cartan equation for filtered A_{∞} algebras	190
		8.4.5	Homological mirror symmetry	198
	Ref	erences		205
9	Lar	ge N dı	nalities and transitions in geometry	210
	9.1	Geom	etry and topology of transitions	212
		9.1.1	The local topology of a conifold transition	214
		9.1.2	Transitions of Calabi-Yau threefolds	221
		9.1.3	Transitions and mirror symmetry	222
		9.1.4	Transitions, black holes etc	223
	9.2	Chern	-Simons theory	224
		9.2.1	Chern–Simons' form and action	226

	9.2.2	The Hamiltonian formulation of the Chern-Simons QFT	
		(following Witten's canonical quantization)	229
	9.2.3	Computability and link invariants	234
9.3		opakumar-Vafa conjecture	242
	9.3.1	Matching the free energies	243
	9.3.2	The matching of expectation values	248
9.4	Lifting	g to M-theory	253
	9.4.1	Riemannian Holonomy, G ₂ manifolds and Calabi-Yau,	
		revisited	254
	9.4.2	The geometry	256
	9.4.3	Branes and M-theory lifts	258
	9.4.4	M-theory lift and M-theory flop	259
9.5	Appen	dix: Some notation on singularities and their resolutions	261
9.6	Appen	dix: More on the Greene-Plesser construction	263
9.7	Appen	dix: More on transitions in superstring theory	264
9.8	Appen	dix: Principal bundles, connections etc	265
9.9	Appen	dix: More on Witten's open-string theory interpretation of	
	QFT		271
Refe	erences		274
Inde	X		279

PARTY AND STATE OF THE PARTY OF