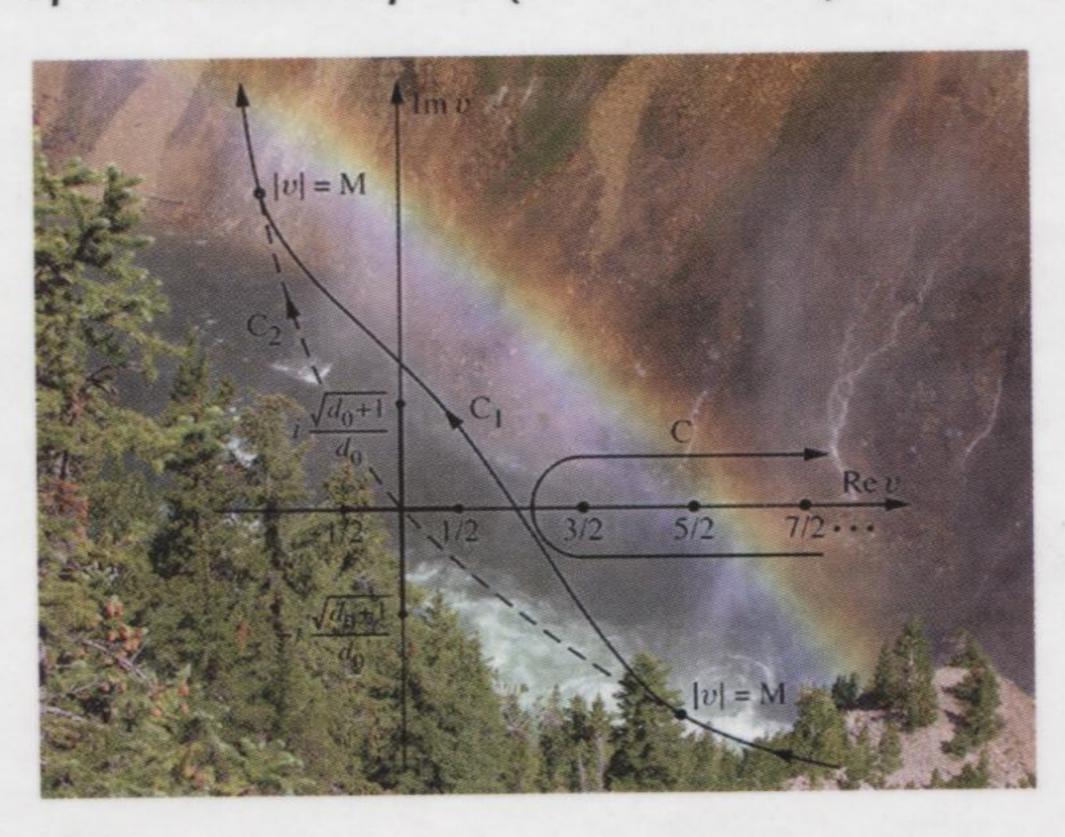
Rays, Waves, and Scattering

John A. Adam

This one-of-a-kind book presents many of the mathematical concepts, structures, and techniques used in the study of rays, waves, and scattering. Panoramic in scope, it includes discussions of how ocean waves are refracted around islands and underwater ridges, how seismic waves are refracted in the earth's interior, how atmospheric waves are scattered by mountains and ridges, how the scattering of light waves produces the blue sky, and meteorological phenomena such as rainbows and coronas.


Rays, Waves, and Scattering is a valuable resource for practitioners, graduate students, and advanced undergraduates in applied mathematics, theoretical physics, and engineering. Bridging the gap between advanced treatments of the subject written for specialists and less mathematical books aimed at beginners, this unique mathematical compendium features problems and exercises throughout that are geared to various levels of sophistication, covering everything from Ptolemy's theorem to Airy integrals (as well as more technical material), and several informative appendixes.

- Provides a panoramic look at wave motion in many different contexts
- Features problems and exercises throughout
- Includes numerous appendixes, some on topics not often covered
- An ideal reference book for practitioners
- Can also serve as a supplemental text in classical applied mathematics, particularly wave theory and mathematical methods in physics and engineering
- Accessible to anyone with a strong background in ordinary differential equations,
 partial differential equations, and functions of a complex variable

"This is a significant contribution to the literature on wave theory, one that blends the mathematics and physics in just the right way. All derivations are given in full so that the work is genuinely a students' book, and Adam has chosen only the most interesting parts of the subject, especially those masterpieces of elegance that draw people to advanced physics in the first place."

—C. J. Chapman, Keele University

John A. Adam is professor of mathematics at Old Dominion University. His books include X and the City: Modeling Aspects of Urban Life, Mathematics in Nature: Modeling Patterns in the Natural World, and Guesstimation: Solving the World's Problems on the Back of a Cocktail Napkin (all Princeton).

Princeton Series in APPLIED MATHEMATICS Ingrid Daubechies, Weinan E, Jan Karel Lenstra, and Endre Süli, Series Editors

Front and back cover photographs: Courtesy of the author

PRINCETON press.princeton.edu

Preface			xvii
Acknowl	edgments		xxiii
Chapter	1 Introd	luction	1
1.1	The Ra	ainbow Directory	3
	1.1.1	The Multifaceted Rainbow	3
1.2	A Matl	hematical Taste of Things to Come	5
	1.2.1	Rays	• 5
	1.2.2	Waves	6
	1.2.3	Scattering (Classical)	7
	1.2.4	Scattering (Semiclassical)	9
	1.2.5	Caustics and Diffraction Catastrophes	11
PART I.	RAYS		15
Chapter	2 Introd	luction to the "Physics" of Rays	17
2.1		s a Ray?	17
	2.1.1	Some Mathematical Definitions	18
		Geometric Wavefronts	19
		Fermat's Principle	21
		The Intensity Law	21
		Heuristic Derivation of Snell's Laws	23
		Generalization	24
2.2		etric and Other Proofs of Snell's Laws of Reflection	
		efraction	25
	2.2.1	The Law of Reflection	25
		The Law of Refraction	26
		A Wave-Theoretic Proof	28
	2.2.4	An Algebraic Proof	29
Chapter	3 Introd	luction to the Mathematics of Rays	33
3.1	Backgr	round	33
3.2	The M	ethod of Characteristics	34

3.3	Introduction to Hamilton-Jacobi Theory	37
	3.3.1 Hamilton's Principle	39
	3.3.2 Rays and Characteristics	39
	3.3.3 The Optical Path Length Revisited	43
3.4	Ray Differential Geometry and the Eikonal Equation Again	46
	3.4.1 The Mirage Theorem for Horizontally Stratified Media	49
	3.4.2 A Return to Spherically Symmetric Media:	
	n(r) Continuous	51
3.5	Dispersion Relations: A Wave-Ray Connection	54
	3.5.1 Fourier Transforms and Dispersion Relations	55
	3.5.2 The Bottom Line	56
	3.5.3 Applications to Atmospheric Waves	61
3.6	General Solution of the Linear Wave Equation:	H DEST
	Some Asymptotics	64
	3.6.1 Stationary Phase	64
	3.6.2 Asymptotics for Oscillatory Sources: Wavenumber	
	Surfaces	65
3.7	Rays and Waves in a Slowly Varying Environment	70
5.7	3.7.1 Some Consequences	71
	3.7.2 Wavepackets and the Group Speed Revisited	75
	3.7.2 Wavepackets and the Group Speed Revisited	, ,
Chapter 4	Ray Optics: The Classical Rainbow	76
4.1	Physical Features and Historical Details: A Summary	76
4.2	Ray Theory of the Rainbow: Elementary Mathematical	
	Considerations	78
	4.2.1 Some Numerical Values	84
	4.2.2 Polarization of the Rainbow	85
	4.2.3 The Divergence Problem	87
4.3	Related Topics in Meteorological Optics	89
	4.3.1 The Glory	89
	4.3.2 Coronas (Simplified)	92
	4.3.3 Rayleigh Scattering—a Dimensional Analysis Argument	93
Chapter 5	An Improvement over Ray Optics: Airy's Rainbow	95
5.1	The Airy Approximation	95
3.1	5.1.1 Some Ray Prerequisites	95
	5.1.2 The Airy Wavefront	100
	5.1.2 How Are Colors Distributed in the Airy Rainbow?	104
	5.1.4 The Airy Wavefront: A Derivation for Arbitrary p	105
	3.1.4 The Any wavemont. A Derivation for Aronary p	103
Chapter 6	Diffraction Catastrophes	113
6.1	Basic Geometry of the Fold and Cusp Catastrophes	114
	6.1.1 The Fold	114
	6.1.2 The Cusp	115
6.2	A Better Approximation	122
	6.2.1 The Fresnel Integrals	124

	CONTENTS	• ix
6.3	The Fold Diffraction Catastrophe	126
0.5	6.3.1 The Rainbow as a Fold Catastrophe	128
6.4	Caustics: The Airy Integral in the Complex Plane	130
0.4	6.4.1 The Nature of $Ai(X)$	133
	O. I.I The Practice of Principle	133
Chapter 7	Introduction to the WKB(J) Approximation: All Things Airy	137
7.1	Overview	137
	7.1.1 Elimination of the First Derivative Term	139
	7.1.2 The Liouville Transformation	141
	7.1.3 The One-Dimensional Schrödinger Equation	143
	7.1.4 Physical Interpretation of the WKB(J) Approximation	144
	7.1.5 The WKB(J) Connection Formulas	145
	7.1.6 Application to a Potential Well	148
7.2	Technical Details	149
7.3	Matching Across a Turning Point	152
7.4	A Little More about Airy Functions	153
	7.4.1 Relation to Bessel Functions	154
	7.4.2 The Airy Integral and Related Topics	156
	7.4.3 Related Integrals	159
Chapter 8	S Island Rays	162
8.1	Straight and Parallel Depth Contours	163
0.1	8.1.1 Plane Wave Incident on a Ridge	164
	8.1.2 Wave Trapping on a Ridge	166
8.2	Circular Depth Contours	167
8.3	Constant Phase Lines	169
0.5	8.3.1 Case 1	169
	8.3.2 Case 2	170
	8.3.3 Case 3	170
0.1		170
8.4	Waves and Currents	170
Chapter 9	Seismic Rays	173
9.1	Seismic Ray Equations	173
9.2	Ray Propagation in a Spherical Earth	175
	9.2.1 A Horizontally Stratified Earth	178
	9.2.2 The Wiechert-Herglotz Inversion	179
	9.2.3 Further Properties of X in the Horizontally Stratified	
	Case	181
PART II	WAVES	187
Chapter 1	O Elastic Waves	189
	Basic Notation	190
10.1	Plane Wave Solutions	193
10.2	Tane wave solutions	1)3

10.3	Surface waves	195
10.4	Love Waves	198
Chapter	11 Surface Gravity Waves	200
11.1	The Basic Fluid Equations	201
11.2	The Dispersion Relation	203
	11.2.1 Deep Water Waves	203
	11.2.2 Shallow Water Waves	204
	11.2.3 Instability	205
	11.2.4 Group Speed Again	210
	11.2.5 Wavepackets	212
11.3	Ship Waves	214
	11.3.1 How Does Dispersion Affect the Wave Pattern	
	Produced by a Moving Object?	214
	11.3.2 Whitham's Ship Wave Analysis	218
	11.3.3 A Geometric Approach to Ship Waves and Wakes	221
	11.3.4 Ship Waves in Shallow Water	227
11.4	A Discrete Approach	229
	11.4.1 Long Waves	229
	11.4.2 Short Waves	230
11.5	Further Analysis for Surface Gravity Waves	231
Chapter	12 Ocean Acoustics	237
		237
12.1	Ocean Acoustic Waveguides 12.1.1. The Governing Equation	237
	12.1.1 The Governing Equation 12.1.2 Low Volcoity Central Lower	239
	12.1.2 Low Velocity Central Layer	
12.2	12.1.3 Leaky Modes One-Dimensional Waves in an Inhomogeneous Medium	240 241
12.2	12.2.1 An Eigenfunction Expansion	241
	12.2.1 An Eigenfunction Expansion 12.2.2 Poles	242
12.3		243
12.3	Model for a Stratified Fluid: Cylindrical Geometry The Sech Squared Potential Well	250
12.4	The Sech-Squared Potential Well	250
	12.4.1 Positive Energy States 12.4.2 Bound States	
	12.4.2 Dound States	253
Chapter	13 Tsunamis	255
13.1	Mathematical Model of Tsunami Propagation (Transient Waves)	255
13.2	The Boundary-Value Problem	257
13.3	Special Case I: Tsunami Generation by a Displacement	
	of the Free Surface	258
	13.3.1 A Digression: Surface Waves on Deep Water (Again)	263
	13.3.2 How Fast Does the Wave Energy Propagate?	265
	13.3.3 Kinematics Again	267
13.4	Leading Waves Due to a Transient Disturbance	268
13.5	Special Case 2: Tsunami Generation by a Displacement	
	of the Seafloor	270

	CONTENTS	• xi
Chapter 14 Atmospheric Waves		273
14.1 Governing Linearized Equations		274
14.2 A Mathematical Model of Lee/Mountain Waves over		
an Isolated Mountain Ridge		285
14.2.1 Basic Equations and Solutions		286
14.2.2 An Isolated Ridge		288
14.2.3 Trapped Lee Waves		290
14.3 Billow Clouds, Wind Shear, and Howard's Semicircle	e Theorem	292
14.4 The Taylor-Goldstein Equation		296
PART III CLASSICAL SCATTERING		299
Chapter 15 The Classical Connection		201
Chapter 15 The Classical Connection		301
15.1 Lagrangians, Action, and Hamiltonians		301
15.2 The Classical Wave Equation		304
15.3 Classical Scattering: Scattering Angles and Cross Se	ctions	308
15.3.1 Overview		308
15.3.2 The Classical Inverse Scattering Problem		313
Chapter 16 Gravitational Scattering		316
16.1 Planetary Orbits: Scattering by a Gravitational Field		317
16.1.1 Repulsive Case: $k > 0$		318
16.1.2 Attractive Case: $k < 0$		319
16.1.3 The Orbits		319
16.2 The Hamilton-Jacobi Equation for a Central Potentia	1	325
16.2.1 The Kepler Problem Revisited		326
16.2.2 Generalizations		327
16.2.3 Hard Sphere Scattering		328
16.2.4 Rutherford Scattering		329
Chapter 17 Scattering of Surface Gravity Waves by Islands, Reefs		
and Barriers		332
17.1 Trapped Waves		333
17.2 The Scattering Matrix $S(\alpha)$		334
17.3 Trapped Modes: Imaginary Poles of $S(\alpha)$		337
17.4 Properties of $S(\alpha)$ for $\alpha \in \mathbb{R}$		338
17.5 Submerged Circular Islands		340
17.6 Edge Waves on a Sloping Beach		342
17.6.1 One-Dimensional Edge Waves on a Constant	Slope	345
17.6.2 Wave Amplication by a Sloping Beach		345

Chapter	18 Acoustic Scattering	348
18.1	Scattering by a Cylinder	350
18.2	Time-Averaged Energy Flux: A Little Bit of Physics	352
18.3	The Impenetrable Sphere	354
	18.3.1 Introduction: Spherically Symmetric Geometry	354
	18.3.2 The Scattering Amplitude Revisited	356
	18.3.3 The Optical Theorem	358
	18.3.4 The Sommerfeld Radiation Condition	358
18.4	Rigid Sphere: Small ka Approximation	359
18.5	Acoustic Radiation from a Rigid Pulsating Sphere	361
18.6	The Sound of Mountain Streams	364
	18.6.1 Bubble Collapse	367
	18.6.2 Playing with Mathematical Bubbles	369
Chapter	19 Electromagnetic Scattering: The Mie Solution	371
19.1	Maxwell's Equations of Electromagnetic Theory	378
19.2	The Vector Helmholtz Equation for Electromagnetic Waves	379
19.3	The Lorentz-Mie solution	383
	19.3.1 Construction of the Solution	386
	19.3.2 The Rayleigh Scattering Limit: A Condensed Derivation	392
	19.3.3 The Radiation Field Generated by a Hertzian Dipole	394
Chapter 2	20 Diffraction of Plane Electromagnetic Waves by a Cylinder	397
20.1	Electric Polarization	398
20.2	More about Classical Diffraction	406
	20.2.1 Huygen's Principle	406
	20.2.2 The Kirchhoff-Huygens Diffraction Integral	406
	20.2.3 Derivation of the Generalized Airy Diffraction Pattern	409
PART IV	SEMICLASSICAL SCATTERING	413
Chapter 2	21 The Classical-to-Semiclassical Connection	415
21.1	Introduction: Classical and Semiclassical Domains	415
21.2	Introduction: The Semiclassical Formulation	416
	21.2.1 The Total Scattering Cross Section	418
	21.2.2 Classical Wave Connections	419
21.3	The Scalar Wave Equation	420
	21.3.1 Separation of Variables	420
	21.3.2 Bauer's Expansion Again	422
21.4	The Radial Equation: Further Details	423
21.5	Some Examples	426
	21.5.1 Scattering by a One-Dimensional Potential Barrier 21.5.2 The Radially Symmetric Problem: Phase Shifts	426
	and the Potential Well	428
	VICE W VALUE A V VWALVANIA I I WAL	2 Aug 1 1

	CONTENTS	• Xiii
Chapter	22 The WKB(J) Approximation Revisited	434
22.1	The Connection Formulas revisited: An Alternative Approach	435
22.2	Tunneling: A Physical Discussion	437
22.3	A Triangular Barrier	438
22.4	More Nuts and Bolts	440
	22.4.1 The Phase Shift	445
	22.4.2 Some Comments on Convergence	445
	22.4.3 The Transition to Classical Scattering	446
22.5	Coulomb Scattering: The Asymptotic Solution	448
	22.5.1 Parabolic Cylindrical Coordinates (ξ, η, ϕ)	449
	22.5.2 Asymptotic Form of ${}_1F_1(-i\mu, 1; ik\xi)$	450
	22.5.3 The Spherical Coordinate System Revisited	451
22.6	Coulomb Scattering: The WKB(J) Approximation	453
	22.6.1 Coulomb Phases	453
	22.6.2 Formal WKB(J) Solutions for the TIRSE	454
	22.6.3 The Langer Transformation: Further Justification	456
Chapter	23 A Sturm-Liouville Equation: The Time-Independent	
One-	Dimensional Schrödinger Equation	459
23.1	Various Theorems	460
23.2	Bound States	463
	23.2.1 Bound-State Theorems	463
	23.2.2 Complex Eigenvalues: Identities for $Im(\lambda_n)$ and $Re(\lambda_n)$	467
	23.2.3 Further Theorems	468
23.3	Weyl's Theorem: Limit Point and Limit Circle	471
PART V	SPECIAL TOPICS IN SCATTERING THEORY	475
Chapter	24 The S-Matrix and Its Analysis	477
24.1	A Square Well Potential	477
	24.1.1 The Bound States	480
	24.1.2 Square Well Resonance: A Heuristic Derivation	
	of the Breit-Wigner Formula	480
	24.1.3 The Watson Transform and Regge Poles	481
24.2	More Details for the TIRSE	487
24.3	Levinson's Theorem	489
Chapter	25 The Jost Solutions: Technical Details	491
25.1	Once More the TIRSE	491
25.2	The Regular Solution Again	494
25.3	Poles of the S-Matrix	498
	25.3.1 Wavepacket Approach	501

Chapter 2	26 One-Dimensional Jost Solutions: The S-Matrix Revisited	504
26.1	Transmission and Reflection Coefficients	504
	26.1.1 Poles of the Transmission Coefficient: Zeros of $c_{12}(k)$	500
26.2	The Jost Formulation on $[0, \infty)$: The Radial Equation Revisited	507
	26.2.1 Jost Boundary Conditions at $r = 0$	50
	26.2.2 Jost Boundary Conditions as $r \to \infty$	508
	26.2.3 The Jost Function and the S-Matrix	508
	26.2.4 Scattering from a Constant Spherical Inhomogeneity	509
Chapter 2	27 Morphology-Dependent Resonances: The Effective Potential	512
27.1	Some Familiar Territory	512
	27.1.1 A Toy Model for $l \neq 0$ Resonances: A Particle Analogy	510
	27.1.2 Resonances	52
Chapter 2	28 Back Where We Started	523
28.1	A Bridge over Colored Water	523
28.2	Ray Optics Revisited: Luneberg Inversion and Gravitational	
	Lensing	53
	28.2.1 Abel's Integral Equation and the Luneberg Lens	53
	28.2.2 Connection with Classical Scattering and	
	Gravitational Lensing	534
Appendix	A Order Notation: The "Big O," "Little o," and " \sim " Symbols	53'
Appendix	B Ray Theory: Exact Solutions	539
B.1	Profile 1	540
B.2	Profile 2	54
B.3	Profile 3	542
B.4	Profile 4	54.
B.5	Profile 5	54.
B.6	Profile 6	54
B.7	Profile 7	54:
B.8	Profile 8	540
B.9	Profile 9	540
B.10	Profile 10	54
Appendix	C Radially Inhomogeneous Spherically Symmetric Scattering:	
	Governing Equations	550
C.1	The Tranverse Magnetic Mode	550

The Tranverse Electric Mode

C.2

CONTENT	s · xv
Appendix D Electromagnetic Scattering from a Radially Inhomogeneous Sphere	553
 D.1 A classical/Quantum connection for Transverse Electric and Magnetic Modes D.2 A Liouville Transformation 	553 556
Appendix E Helmholtz's Theorem	559
E.1 Proof of Helmholtz's Theorem	559
E.2 Lamé's Theorem	560
Appendix F Semiclassical Scattering: A Précis (and a Few More Details)	562
Bibliography	567
Index	585