Analytic Combinatorics

enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps.

This account is the definitive treatment of the topic. In order to make it self-contained, the authors provide full coverage of the underlying mathematics and give a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes throughout the book to aid understanding. The book can be used as a reference for researchers, as a textbook for an advanced undergraduate or a graduate course on the subject, or for self-study.

- Comprehensive: generous notes, appendices, examples and exercises, as well as the inclusion of proofs of fundamental results
- Unified: ties together classical mathematics and modern applications
- Cutting edge: first book with extensive coverage of analytic methods needed to analyse large combinatorial configurations

CAMBRIDGE UNIVERSITY PRESS www.cambridge.org

PREFACE		ix
AN INVITA	ATION TO ANALYTIC COMBINATORICS	1
Part A. S	YMBOLIC METHODS	13
I. COMBIN	ATORIAL STRUCTURES AND ORDINARY GENERATING FUNCTIONS	15
I. 1.	Symbolic enumeration methods	16
I. 2.	Admissible constructions and specifications	24
I. 3.	Integer compositions and partitions	39
I. 4.	Words and regular languages	49
I. 5.	Tree structures	64
I. 6.	Additional constructions	83
I. 7.	Perspective	92
II. LABELI	LED STRUCTURES AND EXPONENTIAL GENERATING FUNCTIONS	95
II. 1.	Labelled classes	96
II. 2.	Admissible labelled constructions	100
II. 3.	Surjections, set partitions, and words	106
II. 4.	Alignments, permutations, and related structures	119
II. 5.	Labelled trees, mappings, and graphs	125
II. 6.	Additional constructions	136
II. 7.	Perspective	147
III. COMB	INATORIAL PARAMETERS AND MULTIVARIATE GENERATING FUNCTIONS	151
III. 1.	An introduction to bivariate generating functions (BGFs)	152
III. 2.	Bivariate generating functions and probability distributions	156
III. 3.	Inherited parameters and ordinary MGFs	163
III. 4.	Inherited parameters and exponential MGFs	174
III. 5.	Recursive parameters	181
III. 6.	Complete generating functions and discrete models	186
III. 7.	Additional constructions	198
III. 8.	Extremal parameters	214
III. 9.	Perspective	218
Part B. C	COMPLEX ASYMPTOTICS	221
IV. COMPI	LEX ANALYSIS, RATIONAL AND MEROMORPHIC ASYMPTOTICS	223
IV. 1.	Generating functions as analytic objects	225
IV. 2.	Analytic functions and meromorphic functions	229

**

	IV. 3.	Singularities and exponential growth of coefficients	238	
	IV. 4. Closure properties and computable bounds			
	IV. 5.	Rational and meromorphic functions	255	
	IV. 6.	Localization of singularities	263	
	IV. 7.	Singularities and functional equations	275	
	IV. 8.	Perspective	286	
V.	APPLICA	TIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS	289	
	V. 1.	A roadmap to rational and meromorphic asymptotics	290	
	V. 2.	The supercritical sequence schema	293	
	V. 3.	Regular specifications and languages	300	
	V. 4.	Nested sequences, lattice paths, and continued fractions	318	
	V. 5.	Paths in graphs and automata	336	
	V. 6.	Transfer matrix models	356	
	V. 7.	Doromantina	373	
	V. /.	Perspective	313	
VI		ARITY ANALYSIS OF GENERATING FUNCTIONS	375	
	VI. 1.	A glimpse of basic singularity analysis theory	376	
	VI. 2.	Coefficient asymptotics for the standard scale	380	
	VI. 3.	Transfers	389	
	VI. 4.	The process of singularity analysis	392	
	VI. 5.	Multiple singularities	398	
	VI. 6.	Intermezzo: functions amenable to singularity analysis	401	
	VI. 7.	Inverse functions	402	
	VI. 8.	Polylogarithms	408	
	VI. 9.	Functional composition	411	
	VI. 10.	Closure properties	418	
	VI. 11.	Tauberian theory and Darboux's method	433	
	VI. 12.	Perspective	437	
VI	I. APPLIC	CATIONS OF SINGULARITY ANALYSIS	439	
	VII. 1.	A roadmap to singularity analysis asymptotics	441	
	VII. 2.	Sets and the exp-log schema	445	
	VII. 3.	Simple varieties of trees and inverse functions	452	
	VII. 4.	Tree-like structures and implicit functions	467	
	VII.5.	Unlabelled non-plane trees and Pólya operators	475	
	VII. 6.	Irreducible context-free structures	482	
	VII. 7.	The general analysis of algebraic functions	493	
	VII. 8.	Combinatorial applications of algebraic functions	506	
	VII.9.	Ordinary differential equations and systems	518	
	VII. 10.	Singularity analysis and probability distributions	532	
		Perspective	538	
VI	II CADD	LE-POINT ASYMPTOTICS	541	
V I				
		Landscapes of analytic functions and saddle-points	543	
		Saddle-point bounds Overview of the saddle point method	546	
		Overview of the saddle-point method Three combinatorial examples	551	
		Three combinatorial examples Admissibility		
		radinissionity	564	
	VIII. O.	Integer partitions	574	

VIII. 7.	Saddle-points and linear differential equations.	581				
VIII. 8.	Large powers	585				
VIII. 9.	Saddle-points and probability distributions	594				
VIII. 10.	Multiple saddle-points	600				
VIII. 11.	Perspective	606				
Part C. RA	ANDOM STRUCTURES	609				
IX. MULTIV	ARIATE ASYMPTOTICS AND LIMIT LAWS	611				
IX. 1.						
IX. 2.	Discrete limit laws	620				
IX. 3.	Combinatorial instances of discrete laws	628				
IX. 4.	Continuous limit laws	638				
IX. 5.	Quasi-powers and Gaussian limit laws	644				
IX. 6.	Perturbation of meromorphic asymptotics	650				
IX. 7.	Perturbation of singularity analysis asymptotics	666				
IX. 8.	Perturbation of saddle-point asymptotics	690				
IX. 9.	Local limit laws	694				
IX. 10.	Large deviations	699				
IX. 11.	Non-Gaussian continuous limits	703				
IX. 12.	Multivariate limit laws	715				
	Perspective	716				
Part D. AF	PENDICES	719				
Appendix A	. AUXILIARY ELEMENTARY NOTIONS	721				
A.1.	Arithmetical functions	721				
A.2.	Asymptotic notations	722				
A.3.	Combinatorial probability	727				
A.4.	Cycle construction	729				
A.5.	Formal power series	730				
A.6.	Lagrange inversion	732				
A.7.	Regular languages	733				
A.8.	Stirling numbers.	735				
A.9.	Tree concepts	737				
Appendix B	BASIC COMPLEX ANALYSIS	739				
B.1.	Algebraic elimination	739				
B.2.	Equivalent definitions of analyticity	741				
B.3.	Gamma function	743				
B.4.	Holonomic functions	748				
B.5.	Implicit Function Theorem	753				
B.6.	Laplace's method	755				
B.7.	Mellin transforms	762				
B.8.	Several complex variables	767				
Appendix C		769				
C.1.	Probability spaces and measure	10)				
C.2.	Random variables	111				
C.3.	Transforms of distributions	772				

C.4. C.5.	Special distributions Convergence in law		774 776
BIBLIOGR	APHY		779
INDEX			801