A modern introduction to Fourier analysis and selected applications which shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavelets. Ideal for students from the physical, engineering, and mathematical sciences who have mastered the usual college level courses in calculus and linear algebra.

Features include:

- Unified treatment of the analysis–synthesis equations of Fourier for periodic and aperiodic functions on R and Z, together with the Poisson identities that connect them
- · A rule based calculus for finding Fourier transforms and series with minimal effort
- Insightful derivations of the fast Fourier transform using the FT rules and using matrix factorizations
- A mathematically correct elementary introduction to generalized functions such as Dirac's delta and the Dirac comb, together with techniques for finding the corresponding Fourier transforms
- An emphasis on the weak limit as the preferred tool to use when working with infinite series, infinite products, and partial derivatives of generalized functions
- · An introduction to Shannon's sampling theorem and its modern variations
- Fourier methods for solving the PDEs that model vibrating strings, heat flow in rods, and the diffraction of laser beams
- An efficient introduction to the orthogonal wavelets of I. Daubechies and corresponding filter banks
- · Additive synthesis, FM synthesis, and spectrograms for computer generated musical tones
- More than 540 exercises that provide drill; illustrate and extend mathematical ideas from the text; provide historical perspective; foster physical insight; and stimulate the development of problem solving skills

Kammler's book invents and makes practical, a substantial upperundergraduate level course in Fourier analysis that is appealing for many curricula. It is a joy to use as a text.

Professor O. Carruth McGehee, Louisiana State University

This book represents a profound and significant advance in the way we can teach mathematics that is both modern and meaningful.

Professor Dennis M. Healy, University of Maryland

The best thing about the book is the problem sets. In addition to the knowledge they gain about Fourier transforms, series, and applications, my students develop strong problem-solving skills that serve them well in other courses.

Professor Patrick J. Van Fleet, University of St. Thomas

All things considered, Kammler's book seems to me to be the best book on Fourier analysis at this level that I have seen.

Professor John A. Synowiec, Illinois State University

Cover design: del norte (Leeds) Ltd

The Mathematical Core

Chapter	1	Fourier's representation for functions on \mathbb{R} , \mathbb{T}_p , \mathbb{Z} , and \mathbb{P}_N	1
	1.1	Synthesis and analysis equations	1
	1.2	Examples of Fourier's representation	12
	1.3	The Parseval identities and related results	23
	1.4	The Fourier–Poisson cube	31
	1.5	The validity of Fourier's representation	37
		Further reading	59
		Exercises	61
Chapter	2	Convolution of functions on \mathbb{R} , \mathbb{T}_p , \mathbb{Z} , and \mathbb{P}_N	89
	2.1	Formal definitions of $f * g$, $f * g$	89
	2.2	Computation of $f * g$	91
	2.3	Mathematical properties of the convolution product	102
	2.4	Examples of convolution and correlation	107
		Further reading	115
		Exercises	116
Chapter	3	The calculus for finding Fourier	
		transforms of functions on $\mathbb R$	129
	3.1	Using the definition to find Fourier transforms	129
	3.2	Rules for finding Fourier transforms	134
	3.3	Selected applications of the Fourier transform calculus	147
		Further reading	155
		Exercises	156

Chapter 4		The calculus for finding Fourier transforms of functions on \mathbb{T}_p , \mathbb{Z} , and \mathbb{P}_N	
	4.1	Fourier series	173
	4.2	Selected applications of Fourier series	190
	4.3	Discrete Fourier transforms	196
	4.4	Selected applications of the DFT calculus	212
		Further reading	216
		Exercises	217
Chapter 5		Operator identities associated with Fourier analysis	239
	5.1	The concept of an operator identity	239
	5.2	Operators generated by powers of ${\mathfrak F}$	243
	5.3	Operators related to complex conjugation	251
		Fourier transforms of operators	255
		Rules for Hartley transforms	263
		Hilbert transforms	266
		Further reading	271
		Exercises	272
Chapter 6		The fast Fourier transform	291
	6.1	Pre-FFT computation of the DFT	291
	6.2	Derivation of the FFT via DFT rules	296
	6.3	The bit reversal permutation	303
	6.4	Sparse matrix factorization of ${\mathcal F}$ when $N=2^m$	310
	6.5	Sparse matrix factorization of H when $N=2^m$	323
	6.6	Sparse matrix factorization of \mathcal{F} when $N = P_1 P_2 \cdots P_m$	327
	6.7	Kronecker product factorization of F	338
		Further reading	345
		Exercises	345
Chapter 7		Generalized functions on \mathbb{R}	367
	7.1	The concept of a generalized function	367
	7.2	Common generalized functions	379
	7.3	Manipulation of generalized functions	389
	7.4	Derivatives and simple differential equations	405
	7.5	The Fourier transform calculus for generalized functions	413
	7.6	Limits of generalized functions	427
	7.7	Periodic generalized functions Periodic generalized functions	440
	7.8	Alternative definitions for generalized functions	450
	1.0	Further reading	452
		Exercises	453

Chapter 8	Sampling	483
8.1	Sampling and interpolation	483
8.2	Reconstruction of f from its samples	487
8.3	Reconstruction of f from samples of $a_1 * f$, $a_2 * f$,	497
8.4	Approximation of almost bandlimited functions	505
	Further reading	508
	Exercises	509
Chapter 9	Partial differential equations	523
9.1	Introduction	523
9.2	The wave equation	526
9.3	The diffusion equation	540
9.4	The diffraction equation	553
9.5	Fast computation of frames for movies	571
	Further reading	573
	Exercises	574
Chapter 10	Wavelets	593
10.1	The Haar wavelets	593
10.2	Support-limited wavelets	609
10.3	Analysis and synthesis with Daubechies wavelets	640
10.4	Filter banks	655
	Further reading	673
	Exercises	674
Chapter 11	Musical tones	693
11.1	Basic concepts	693
11.2	Spectrograms	702
11.3	Additive synthesis of tones	707
11.4	FM synthesis of tones	711
11.5	Synthesis of tones from noise	718
11.6	Music with mathematical structure	723
	Further reading	727
	Exercises	728

Chapter 12	Probability	73'
12.1	Probability density functions on \mathbb{R}	73
12.2	Some mathematical tools	74
12.3	The characteristic function	74
12.4	Random variables	75
12.5	The central limit theorem	76
	Further reading	78
	Exercises	78
Appendices		A-:
Appendix 1	The impact of Fourier analysis	A-
Appendix 2	Functions and their Fourier transforms	A
Appendix 3	The Fourier transform calculus	A-1
Appendix 4	Operators and their Fourier transforms	A-1
Appendix 5	The Whittaker–Robinson flow chart	
	for harmonic analysis	A-2
Appendix 6	FORTRAN code for a radix 2 FFT	A-2
Appendix 7	The standard normal probability distribution	A-3
Appendix 8	Frequencies of the piano keyboard	A-3

Index

I-1