

"Admirably fills the need for an up-to-date textbook in this area... it is the only book presenting key results of the theory, including those related to black holes, quantum cosmology and the derivation of general relativity from the fundamental theory of quantum spacetime. The authors achieve a good balance of big ideas and principles with the technical details."

Lee Smolin, Perimeter Institute for Theoretical Physics

"This is an excellent introduction to spinfoams, an area of loop quantum gravity that draws ideas also from Regge calculus, topological field theory and group field theory. It fills an important gap in the literature offering both a pedagogical overview and a platform for further developments in a forefront area of research that is advancing rapidly."

Abhay Ashtekar, The Pennsylvania State University

Quantum gravity is among the most fascinating problems in physics. It modifies our understanding of time, space and matter. The recent development of the loop approach has allowed us to explore domains ranging from black hole thermodynamics to the early universe.

This book provides readers with a simple introduction to loop quantum gravity, centered on its covariant approach. It focuses on the physical and conceptual aspects of the problem and includes the background material needed to enter this lively domain of research, making it ideal for researchers and graduate students.

Topics covered include quanta of space gauge theory, classical and quantum physics without time, tetrad formalism, Holst action, lattice gauge theory, Regge calculus, ADM and Ashtekar variables, Ponzano—Regge and Turaev—Viro amplitudes, kinematics and dynamics of 4d Lorentzian quantum gravity, spectrum of area and volume, coherent states, classical limit, matter couplings, graviton propagator, spinfoam cosmology and black hole thermodynamics.

CARLO ROVELLI is Professor of Physics at Aix-Marseille Université, where he directs the gravity research group. He is one of the founders of loop quantum gravity.

FRANCESCA VIDOTTO is NWO Veni Fellow at Radboud Universiteit Nijmegen and initiated the spinfoam approach to cosmology.

Cover illustration: "Jimi Hendrix, House Burning Down", Martin Klimas.
Cover design: Andrew Ward

CAMBRIDGE
UNIVERSITY PRESS
www.cambridge.org

ISBN 978-1-108-81025-8

9 781108 810258 >

Part I FOUNDATIONS

1 Spacetime as a quantum object	3
1.1 The problem	3
1.2 The end of space and time	6
1.3 Geometry quantized	9
1.3.1 Quanta of area and volume	14
1.4 Physical consequences of the existence of the Planck scale	16
1.4.1 Discreteness: scaling is finite	16
1.4.2 Fuzziness: disappearance of classical space and time	18
1.5 Graphs, loops, and quantum Faraday lines	18
1.6 The landscape	21
1.7 Complements	21
1.7.1 SU(2) representations and spinors	21
1.7.2 Pauli matrices	26
1.7.3 Eigenvalues of the volume	27
2 Physics without time	30
2.1 Hamilton function	30
2.1.1 Boundary terms	35
2.2 Transition amplitude	36
2.2.1 Transition amplitude as an integral over paths	37
2.2.2 General properties of the transition amplitude	39
2.3 General covariant form of mechanics	41
2.3.1 Hamilton function of a general covariant system	44
2.3.2 Partial observables	45
2.3.3 Classical physics without time	46
2.4 Quantum physics without time	47
2.4.1 Observability in quantum gravity	49
2.4.2 Boundary formalism	50
2.4.3 Relational quanta, relational space	52
2.5 Complements	53
2.5.1 Example of a timeless system	53
2.5.2 Symplectic structure and Hamilton function	55

3 Gravity	58
3.1 Einstein's formulation	58
3.2 Tetrads and fermions	59
3.2.1 An important sign	62
3.2.2 First-order formulation	63
3.3 Holst action and Barbero–Immirzi coupling constant	64
3.3.1 Linear simplicity constraint	65
3.3.2 Boundary term	67
3.4 Hamiltonian general relativity	67
3.4.1 ADM variables	68
3.4.2 What does this mean? Dynamics	70
3.4.3 Ashtekar connection and triads	72
3.5 Euclidean general relativity in three spacetime dimensions	74
3.6 Complements	76
3.6.1 Working with general covariant field theory	76
3.6.2 Problems	79
4 Classical discretization	80
4.1 Lattice QCD	80
4.1.1 Hamiltonian lattice theory	82
4.2 Discretization of covariant systems	83
4.3 Regge calculus	85
4.4 Discretization of general relativity on a two-complex	89
4.5 Complements	95
4.5.1 Holonomy	95
4.5.2 Problems	96

Part II THREE-DIMENSIONAL THEORY

5 Three-dimensional euclidean theory	99
5.1 Quantization strategy	99
5.2 Quantum kinematics: Hilbert space	100
5.2.1 Length quantization	101
5.2.2 Spin networks	102
5.3 Quantum dynamics: transition amplitudes	106
5.3.1 Properties of the amplitude	109
5.3.2 Ponzano–Regge model	110
5.4 Complements	113
5.4.1 Elementary harmonic analysis	113
5.4.2 Alternative form of the transition amplitude	114
5.4.3 Poisson brackets	116
5.4.4 Perimeter of the universe	117

6 Bubbles and the cosmological constant	118
6.1 Vertex amplitude as gauge-invariant identity	118
6.2 Bubbles and spikes	120
6.3 Turaev–Viro amplitude	123
6.3.1 Cosmological constant	125
6.4 Complements	127
6.4.1 A few notes on $SU(2)_q$	127
6.4.2 Problem	128

Part III THE REAL WORLD

7 The real world: four-dimensional lorentzian theory	131
7.1 Classical discretization	131
7.2 Quantum states of gravity	134
7.2.1 Y_γ map	135
7.2.2 Spin networks in the physical theory	137
7.2.3 Quanta of space	140
7.3 Transition amplitudes	141
7.3.1 Continuum limit	143
7.3.2 Relation with QED and QCD	145
7.4 Full theory	146
7.4.1 Face amplitude, wedge amplitude, and the kernel P	147
7.4.2 Cosmological constant and IR finiteness	149
7.4.3 Variants	149
7.5 Complements	151
7.5.1 Summary of the theory	151
7.5.2 Computing with spin networks	152
7.5.3 Spectrum of the volume	155
7.5.4 Unitary representation of the Lorentz group and the Y_γ map	159
8 Classical limit	162
8.1 Intrinsic coherent states	162
8.1.1 Tetrahedron geometry and $SU(2)$ coherent states	163
8.1.2 Livine–Speziale coherent intertwiners	167
8.1.3 Thin and thick wedges and time-oriented tetrahedra	168
8.2 Spinors and their magic	169
8.2.1 Spinors, vectors, and bivectors	171
8.2.2 Coherent states and spinors	172
8.2.3 Representations of $SU(2)$ and $SL(2, \mathbb{C})$ on functions of spinors and Y_γ map	173
8.3 Classical limit of the vertex amplitude	175
8.3.1 Transition amplitude in terms of coherent states	175
8.3.2 Classical limit versus continuum limit	180
8.4 Extrinsic coherent states	183

9 Matter	187
9.1 Fermions	187
9.2 Yang–Mills fields	193
Part IV PHYSICAL APPLICATIONS	
10 Black holes	197
10.1 Bekenstein–Hawking entropy	197
10.2 Local thermodynamics and Frodden–Ghosh–Perez energy	199
10.3 Kinematical derivation of the entropy	201
10.4 Dynamical derivation of the entropy	204
10.4.1 Entanglement entropy and area fluctuations	208
10.5 Complements	209
10.5.1 Accelerated observers in Minkowski and Schwarzschild metrics	209
10.5.2 Tolman law and thermal time	210
10.5.3 Algebraic quantum theory	210
10.5.4 KMS and thermometers	211
10.5.5 General covariant statistical mechanics and quantum gravity	212
11 Cosmology	215
11.1 Classical cosmology	215
11.2 Canonical loop quantum cosmology	218
11.3 Spinfoam cosmology	220
11.3.1 Homogeneous and isotropic geometry	221
11.3.2 Vertex expansion	222
11.3.3 Large-spin expansion	223
11.4 Maximal acceleration	225
11.5 Physical predictions?	226
12 Scattering	227
12.1 n -Point functions in general covariant theories	227
12.2 Graviton propagator	231
13 Final remarks	235
13.1 Brief historical note	235
13.2 What is missing	236
<i>References</i>	240
<i>Index</i>	252