

Contents

<i>Preface to the First Edition</i>	<i>page</i>	xv
<i>Preface to the Second Edition</i>	<i>page</i>	xviii
<i>A note on the choice of metric</i>	<i>page</i>	xx
<i>Text website</i>	<i>page</i>	xxi
Part 1 Effective field theory: the Standard Model, supersymmetry, unification		
		1
1 Before the Standard Model		3
Suggested reading		7
2 The Standard Model		8
2.1 Yang–Mills theory		8
2.2 Realizations of symmetry in quantum field theory		10
2.3 The quantization of Yang–Mills theories		16
2.4 The particles and fields of the Standard Model: gauge bosons and fermions		20
2.5 The particles and fields of the Standard Model: Higgs scalars and the complete Standard Model		22
2.6 The gauge boson masses		23
2.7 Quark and lepton masses		24
2.8 The Higgs field and its couplings		25
Suggested reading		26
Exercises		26
3 Phenomenology of the Standard Model		27
3.1 The weak interactions		27
3.2 Discovery of the Higgs		29
3.3 The quark and lepton mass matrices		32
3.4 The strong interactions		34
3.5 The renormalization group		36
3.6 Calculating the beta function		39
3.7 The strong interactions and dimensional transmutation		43
3.8 Confinement and lattice gauge theory		44
3.9 Strong interaction processes at high momentum transfer		51
Suggested reading		61
Exercises		62

4 The Standard Model as an effective field theory	63
4.1 Integrating out massive fields	63
4.2 Lepton and baryon number violation; neutrino mass	67
4.3 Challenges for the Standard Model	71
4.4 The naturalness principle	74
4.5 Summary: successes and limitations of the Standard Model	75
Suggested reading	75
5 Anomalies, instantons and the strong CP problem	76
5.1 The chiral anomaly	77
5.2 A two-dimensional detour	81
5.3 Real QCD	88
5.4 The strong CP problem	98
5.5 Possible solutions of the strong CP problem	100
Suggested reading	104
Exercises	104
6 Grand unification	106
6.1 Cancelation of anomalies	108
6.2 Renormalization of couplings	108
6.3 Breaking to $SU(3) \times SU(2) \times U(1)$	109
6.4 $SU(2) \times U(1)$ breaking	110
6.5 Charge quantization and magnetic monopoles	111
6.6 Proton decay	112
6.7 Other groups	112
Suggested reading	114
Exercises	115
7 Magnetic monopoles and solitons	116
7.1 Solitons in $1 + 1$ dimensions	117
7.2 Solitons in $2 + 1$ dimensions: strings or vortices	118
7.3 Magnetic monopoles	119
7.4 The BPS limit	120
7.5 Collective coordinates for the monopole solution	122
7.6 The Witten effect: the electric charge in the presence of θ	123
7.7 Electric–magnetic duality	124
Suggested reading	125
Exercises	125
8 Technicolor: a first attempt to explain hierarchies	126
8.1 QCD in a world without Higgs fields	127
8.2 Fermion masses: extended technicolor	128
8.3 The Higgs discovery and precision electroweak measurements	130
8.4 The Higgs as a Goldstone particle	131

881	Suggested reading	131
881	Exercises	132
481	Suggested reading	133
281	Part 2 Supersymmetry	133
381		
081	9 Supersymmetry	135
181	9.1 The supersymmetry algebra and its representations	136
081	9.2 Superspace	136
081	9.3 $N = 1$ Lagrangians	140
081	9.4 The supersymmetry currents	142
081	9.5 The ground state energy in globally supersymmetric theories	143
081	9.6 Some simple models	144
081	9.7 Non-renormalization theorems	146
081	9.8 Local supersymmetry: supergravity	148
081	Suggested reading	149
081	Exercises	150
118		
10 A first look at supersymmetry breaking	151	
118	10.1 Spontaneous supersymmetry breaking	151
118	10.2 The goldstino theorem	153
118	10.3 Loop corrections and the vacuum degeneracy	154
118	10.4 Explicit soft supersymmetry breaking	155
118	10.5 Supersymmetry breaking in supergravity models	157
118	Suggested reading	159
118	Exercises	159
118		
11 The Minimal Supersymmetric Standard Model	160	
118	11.1 Soft supersymmetry breaking in the MSSM	162
118	11.2 $SU(2) \times U(1)$ breaking	166
118	11.3 Embedding the MSSM in supergravity	167
118	11.4 Radiative corrections to the Higgs mass limit	168
118	11.5 Fine tuning of the Higgs mass	170
118	11.6 Reducing the tuning: the NMSSM	170
118	11.7 Constraints on low-energy supersymmetry: direct searches and rare processes	171
118	Suggested reading	176
118	Exercises	176
118		
12 Supersymmetric grand unification	177	
118	12.1 A supersymmetric grand unified model	177
118	12.2 Coupling constant unification	178
118	12.3 Dimension-five operators and proton decay	179
118	Suggested reading	181
118	Exercises	181

13 Supersymmetric dynamics	182
13.1 Criteria for supersymmetry breaking: the Witten index	182
13.2 Gaugino condensation in pure gauge theories	184
13.3 Supersymmetric QCD	185
13.4 $N_f < N$: a non-perturbative superpotential	188
13.5 The superpotential in the case $N_f < N - 1$	190
13.6 $N_f = N - 1$: the instanton-generated superpotential	191
Suggested reading	196
Exercises	196
14 Dynamical supersymmetry breaking	198
14.1 Models of dynamical supersymmetry breaking	198
14.2 Metastable supersymmetry breaking	200
14.3 Particle physics and dynamical supersymmetry breaking	203
Suggested reading	209
Exercises	210
15 Theories with more than four conserved supercharges	211
15.1 $N = 2$ theories: exact moduli spaces	211
15.2 A still simpler theory: $N = 4$ Yang–Mills	213
15.3 A deeper understanding of the BPS condition	214
15.4 Seiberg–Witten theory	216
Suggested reading	221
Exercises	221
16 More supersymmetric dynamics	222
16.1 Conformally invariant field theories	222
16.2 More supersymmetric QCD	224
16.3 $N_f = N_c$	224
16.4 $N_f > N + 1$	228
16.5 $N_f \geq 3N/2$	229
Suggested reading	229
Exercises	230
17 An introduction to general relativity	231
17.1 Tensors in general relativity	232
17.2 Curvature	236
17.3 The gravitational action	237
17.4 The Schwarzschild solution	239
17.5 Features of the Schwarzschild metric	241
17.6 Coupling spinors to gravity	243
Suggested reading	244
Exercises	244

18 Cosmology	245
18.1 The cosmological principle and the FRW universe	245
18.2 A history of the universe	248
Suggested reading	253
Exercises	253
19 Particle astrophysics and inflation	254
19.1 Inflation	256
19.2 The axion as the dark matter	264
19.3 The LSP as the dark matter	267
19.4 The moduli problem	270
19.5 Baryogenesis	272
19.6 Flat directions and baryogenesis	280
19.7 Supersymmetry breaking in the early universe	281
19.8 The fate of the condensate	282
19.9 Dark energy	284
Suggested reading	285
Exercises	286
Part 3 String theory	287
20 Introduction	289
20.1 The peculiar history of string theory	290
Suggested reading	294
21 The bosonic string	295
21.1 The light cone gauge in string theory	297
21.2 Closed strings	300
21.3 String interactions	301
21.4 Conformal invariance	303
21.5 Vertex operators and the S-matrix	309
21.6 The S-matrix versus the effective action	314
21.7 Loop amplitudes	315
Suggested reading	317
Exercises	318
22 The superstring	319
22.1 Open superstrings	319
22.2 Quantization in the Ramond sector: the appearance of space–time fermions	321
22.3 Type II theory	322
22.4 World-sheet supersymmetry	323
22.5 The spectra of the superstrings	323
22.6 Manifest space–time supersymmetry: the Green–Schwarz formalism	330
22.7 Vertex operators	332

Suggested reading	333
Exercises	333
23 The heterotic string	335
23.1 The $O(32)$ theory	335
23.2 The $E_8 \times E_8$ theory	336
23.3 Heterotic string interactions	337
23.4 A non-supersymmetric heterotic string theory	338
Suggested reading	339
Exercises	339
24 Effective actions in ten dimensions	340
24.1 Eleven-dimensional supergravity	340
24.2 The IIA and IIB supergravity theories	341
24.3 Ten-dimensional supersymmetric Yang–Mills theory	342
24.4 Coupling constants in string theory	343
Suggested reading	346
Exercise	346
25 Compactification of string theory I. Tori and orbifolds	347
25.1 Compactification in field theory: the Kaluza–Klein program	347
25.2 Closed strings on tori	350
25.3 Enhanced symmetries and T -duality	354
25.4 Strings in background fields	355
25.5 Bosonic formulation of the heterotic string	359
25.6 Orbifolds	360
25.7 Effective actions in four dimensions for orbifold models	366
25.8 Non-supersymmetric compactifications	369
Suggested reading	370
Exercises	371
26 Compactification of string theory II. Calabi–Yau compactifications	372
26.1 Mathematical preliminaries	372
26.2 Calabi–Yau spaces: constructions	376
26.3 The spectrum of Calabi–Yau compactifications	379
26.4 World-sheet description of Calabi–Yau compactification	381
26.5 An example: the quintic in CP^4	383
26.6 Calabi–Yau compactification of the heterotic string at weak coupling	385
Suggested reading	395
Exercises	395

	Part 4 Appendices	449
	Appendix A Two-component spinors	451
	Appendix B Goldstone's theorem and the pi mesons	454
	Exercises	456
	Appendix C Some practice with the path integral in field theory	457
	C.1 Path integral review	457
	C.2 Finite-temperature field theory	458
	C.3 QCD at high temperatures	462
	C.4 Weak interactions at high temperatures	463
	C.5 Electroweak baryon number violation	464
	Suggested reading	466
	Exercises	466
	Appendix D The beta function in supersymmetric Yang–Mills theory	467
	Suggested reading	468
	Exercise	469
	<i>References</i>	470
	<i>Index</i>	477
184	2.1 Closed string theory	47
184	2.2 The string worldsheet	47
184	2.3 The string action	47
184	2.4 Strings in background fields	55
184	2.5 Bosonic formulation of the heterotic string	59
184	2.6 Orbifolds	60
184	2.7 The heterotic string theory	60
184	2.8 The supersymmetric string theory	60
184	Suggested reading	60
184	Exercises	60
184	25.1 The string theory	366
184	25.2 The supersymmetric string theory	369
184	Suggested reading	370
184	Exercises	371
184	26.1 Construction of string fields	372
184	26.2 The spectrum of the string theory	372
184	26.3 The spectrum of the Calabi–Yau compactification	376
184	26.4 World-sheet description of Calabi–Yau compactification	381
184	26.5 An example: the quintic	383
184	26.6 Calabi–Yau moduli	385
184	Suggested reading	385
184	Exercises	395