Contents

From	absolute space and time to influenceable spacetime:
	erview
1.1	Definition of relativity
1.2	Newton's laws and inertial frames
1.3	The Galilean transformation
1.4	Newtonian relativity
1.5	Objections to absolute space; Mach's principle
1.6	The ether
1.7	Michelson and Morley's search for the ether
1.8	Lorentz's ether theory
1.9	Origins of special relativity
1.10	Further arguments for Einstein's two postulates
1.11	Cosmology and first doubts about inertial frames
1.12	Inertial and gravitational mass
1.13	Einstein's equivalence principle
1.14	Preview of general relativity
1.15	Caveats on the equivalence principle
1.16	Gravitational frequency shift and light bending
	Exercises 1
Spec	cial Relativity
Foun	dations of special relativity; The Lorentz transformation
2.1	On the nature of physical theories
2.2	Basic features of special relativity
2.3	Relativistic problem solving
2.4	Relativity of simultaneity, time-dilation and length-contraction: a preview
2.5	The relativity principle and the homogeneity and isotropy of inertial frames
2.6	The coordinate lattice; Definitions of simultaneity
2.7	Derivation of the Lorentz transformation

x Contents

	2.8	Properties of the Lorentz transformation	47
	2.9	Graphical representation of the Lorentz transformation	49
	2.10	The relativistic speed limit	54
	2.11	Which transformations are allowed by the relativity principle?	57
		Exercises 2	58
3	Relativistic kinematics		61
	3.1	Introduction	61
	3.2	World-picture and world-map	61
	3.3	Length contraction	62
	3.4	Length contraction paradox	63
	3.5	Time dilation; The twin paradox	64
	3.6	Velocity transformation; Relative and mutual velocity	68
	3.7	Acceleration transformation; Hyperbolic motion	70
	3.8	Rigid motion and the uniformly accelerated rod	71
		Exercises 3	73
4	Relat	ivistic optics	77
	4.1	Introduction	77
	4.2	The drag effect	77
	4.3	The Doppler effect	78
	4.4	Aberration	81
	4.5	The visual appearance of moving objects	82
		Exercises 4	85
5	Spacetime and four-vectors		89
	5.1	The discovery of Minkowski space	89
	5.2	Three-dimensional Minkowski diagrams	90
	5.3	Light cones and intervals	91
	5.4	Three-vectors	94
	5.5	Four-vectors	97
	5.6	The geometry of four-vectors	101
	5.7	Plane waves	103
		Exercises 5	105
6	Relat	ivistic particle mechanics	108
	6.1	Domain of sufficient validity of Newtonian mechanics	108
	6.2	The axioms of the new mechanics	109
	6.3	The equivalence of mass and energy	111
	6.4	Four-momentum identities	114
	6.5	Relativistic billiards	115
	6.6	The zero-momentum frame	117
	6.7	Threshold energies	118
	6.8	Light quanta and de Broglie waves	119

	6.9	The Compton effect	121
	6.10	Four-force and three-force	
	15.2	Exercises 6	126
			E 11 325
7	Four-	tensors; Electromagnetism in vacuum	130
	7.1	Tensors: Preliminary ideas and notations	130
	7.2	Tensors: Definition and properties	132
	7.3	Maxwell's equations in tensor form	139
	7.4	The four-potential	143
	7.5	Transformation of e and b; The dual field	146
	7.6	The field of a uniformly moving point charge	148
	7.7	The field of an infinite straight current	150
	7.8	The energy tensor of the electromagnetic field	151
	7.9	From the mechanics of the field to the mechanics of	
		material continua	154
		Exercises 7	157
II	Gen	eral Relativity	163
8	Curve	ed spaces and the basic ideas of general relativity	165
	8.1	Curved surfaces	165
	8.2	Curved spaces of higher dimensions	169
	8.3	Riemannian spaces	172
	8.4	A plan for general relativity	177
		Exercises 8	180
9	Static and stationary spacetimes		
	9.1	The coordinate lattice	183
	9.2	Synchronization of clocks	184
	9.3	First standard form of the metric	186
	9.4	Newtonian support for the geodesic law of motion	188
863	9.5	Symmetries and the geometric characterization of	
		static and stationary spacetimes	191
	9.6	Canonical metric and relativistic potentials	195
	9.7	The uniformly rotating lattice in Minkowski space	198
		Exercises 9	200
10	Geod	esics, curvature tensor and vacuum field equations	203
	10.1	Tensors for general relativity	203
	10.2	Geodesics	204
	10.3	Geodesic coordinates	208
	10.4	Covariant and absolute differentiation	210
	10.5	The Riemann curvature tensor	217
	10.6	Einstein's vacuum field equations	221
		Exercises 10	224

Contents xi

11	The S	chwarzschild metric	228
	11.1	Derivation of the metric	228
	11.2	Properties of the metric	230
	11.3	The geometry of the Schwarzschild lattice	231
QC.I	11.4	Contributions of the spatial curvature to	
		post-Newtonian effects	233
	11.5	Coordinates and measurements	235
	11.6	The gravitational frequency shift	236
	11.7	Isotropic metric and Shapiro time delay	237
	11.8	Particle orbits in Schwarzschild space	238
	11.9	The precession of Mercury's orbit	241
	11.10	Photon orbits	245
	11.11	Deflection of light by a spherical mass	248
	11.12	Gravitational lenses	250
	11.13	de Sitter precession via rotating coordinates	252
		Exercises 11	254
12	Black	holes and Kruskal space	258
	12.1	Schwarzschild black holes	258
	12.2	Potential energy; A general-relativistic 'proof' of $E = mc^2$	263
	12.3	The extendibility of Schwarzschild spacetime	265
	12.4	The uniformly accelerated lattice	267
	12.5	Kruskal space	272
	12.6	Black-hole thermodynamics and related topics	279
		Exercises 12	281
13	An exa	act plane gravitational wave	284
	13.1	Introduction	284
	13.2	The plane-wave metric	284
	13.3	When wave meets dust	287
	13.4	Inertial coordinates behind the wave	288
	13.5	When wave meets light	290
	13.6	The Penrose topology	291
	13.7	Solving the field equation	293
		Exercises 13	295
14	The fu	ıll field equations; de Sitter space	296
	14.1	The laws of physics in curved spacetime	296
	14.2	At last, the full field equations	299
	14.3	The cosmological constant	303
	14.4	Modified Schwarzschild space	304
	14.5	de Sitter space	306
	14.6	Anti-de Sitter space	312
		Exercises 14	314

			Contents	xiii
15	Linear	ized general relativity		318
10		The basic equations		318
		Gravitational waves. The TT gauge		323
	15.3	Some physics of plane waves		325
	15.4	Generation and detection of gravitational waves		330
	15.5	The electromagnetic analogy in linearized GR		335
		Exercises 15		341
Ш	Cosm	ology		345
16	Cosmo	logical spacetimes		347
		The basic facts		347
	16.2	Beginning to construct the model		358
	16.3	Milne's model		360
	16.4	The Friedman-Robertson-Walker metric		363
	16.5	Robertson and Walker's theorem		368
		Exercises 16		369
17	Light	propagation in FRW universes		373
	17.1	Representation of FRW universes by subuniverses		373
	17.2	The cosmological frequency shift		374
	17.3	Cosmological horizons		376
	17.4	The apparent horizon		382
	17.5	Observables		384
		Exercises 17		388
18	Dynan	nics of FRW universes		391
	18.1	Applying the field equations		391
		What the field equations tell us		393
	18.3	The Friedman models		396
17	18.4	Once again, comparison with observation		405
	18.5	Inflation		409
	18.6	The anthropic principle		413
		Exercises 18		415
App	endix:	Curvature tensor components for the diagonal metric		417
Ind	ex			421