

# Contents

|                                                     |      |       |
|-----------------------------------------------------|------|-------|
| Foreword, by Chris Isham                            | page | xvii  |
| Preface                                             | page | xix   |
| Notation and conventions                            | page | xxiii |
| <b>Introduction: Defining quantum gravity</b>       | page | 1     |
| Why quantum gravity in the twenty-first century?    | page | 1     |
| The role of background independence                 | page | 8     |
| Approaches to quantum gravity                       | page | 11    |
| Motivation for canonical quantum general relativity | page | 23    |
| Outline of the book                                 | page | 25    |

## I CLASSICAL FOUNDATIONS, INTERPRETATION AND THE CANONICAL QUANTISATION PROGRAMME

|                                                                                                                                            |      |    |
|--------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| <b>1 Classical Hamiltonian formulation of General Relativity</b>                                                                           | page | 39 |
| 1.1 The ADM action                                                                                                                         | page | 39 |
| 1.2 Legendre transform and Dirac analysis of constraints                                                                                   | page | 46 |
| 1.3 Geometrical interpretation of the gauge transformations                                                                                | page | 50 |
| 1.4 Relation between the four-dimensional diffeomorphism group and the transformations generated by the constraints                        | page | 56 |
| 1.5 Boundary conditions, gauge transformations and symmetries                                                                              | page | 60 |
| 1.5.1 Boundary conditions                                                                                                                  | page | 60 |
| 1.5.2 Symmetries and gauge transformations                                                                                                 | page | 65 |
| <b>2 The problem of time, locality and the interpretation of quantum mechanics</b>                                                         | page | 74 |
| 2.1 The classical problem of time: Dirac observables                                                                                       | page | 75 |
| 2.2 Partial and complete observables for general constrained systems                                                                       | page | 81 |
| 2.2.1 Partial and weak complete observables                                                                                                | page | 82 |
| 2.2.2 Poisson algebra of Dirac observables                                                                                                 | page | 85 |
| 2.2.3 Evolving constants                                                                                                                   | page | 89 |
| 2.2.4 Reduced phase space quantisation of the algebra of Dirac observables and unitary implementation of the multi-fingered time evolution | page | 90 |
| 2.3 Recovery of locality in General Relativity                                                                                             | page | 93 |

|          |                                                                                         |     |
|----------|-----------------------------------------------------------------------------------------|-----|
| 2.4      | Quantum problem of time: physical inner product and interpretation of quantum mechanics | 95  |
| 2.4.1    | Physical inner product                                                                  | 95  |
| 2.4.2    | Interpretation of quantum mechanics                                                     | 98  |
| <b>3</b> | <b>The programme of canonical quantisation</b>                                          | 107 |
| 3.1      | The programme                                                                           | 108 |
| <b>4</b> | <b>The new canonical variables of Ashtekar for General Relativity</b>                   | 118 |
| 4.1      | Historical overview                                                                     | 118 |
| 4.2      | Derivation of Ashtekar's variables                                                      | 123 |
| 4.2.1    | Extension of the ADM phase space                                                        | 123 |
| 4.2.2    | Canonical transformation on the extended phase space                                    | 126 |

## II FOUNDATIONS OF MODERN CANONICAL QUANTUM GENERAL RELATIVITY

|          |                                                                                                |     |
|----------|------------------------------------------------------------------------------------------------|-----|
| <b>5</b> | <b>Introduction</b>                                                                            | 141 |
| 5.1      | Outline and historical overview                                                                | 141 |
| <b>6</b> | <b>Step I: the holonomy–flux algebra <math>\mathfrak{P}</math></b>                             | 157 |
| 6.1      | Motivation for the choice of $\mathfrak{P}$                                                    | 157 |
| 6.2      | Definition of $\mathfrak{P}$ : (1) Paths, connections, holonomies and cylindrical functions    | 162 |
| 6.2.1    | Semianalytic paths and holonomies                                                              | 162 |
| 6.2.2    | A natural topology on the space of generalised connections                                     | 168 |
| 6.2.3    | Gauge invariance: distributional gauge transformations                                         | 175 |
| 6.2.4    | The $C^*$ algebraic viewpoint and cylindrical functions                                        | 183 |
| 6.3      | Definition of $\mathfrak{P}$ : (2) surfaces, electric fields, fluxes and vector fields         | 191 |
| 6.4      | Definition of $\mathfrak{P}$ : (3) regularisation of the holonomy–flux Poisson algebra         | 194 |
| 6.5      | Definition of $\mathfrak{P}$ : (4) Lie algebra of cylindrical functions and flux vector fields | 202 |
| <b>7</b> | <b>Step II: quantum <math>*</math>-algebra <math>\mathfrak{A}</math></b>                       | 206 |
| 7.1      | Definition of $\mathfrak{A}$                                                                   | 206 |
| 7.2      | (Generalised) bundle automorphisms of $\mathfrak{A}$                                           | 209 |
| <b>8</b> | <b>Step III: representation theory of <math>\mathfrak{A}</math></b>                            | 212 |
| 8.1      | General considerations                                                                         | 212 |
| 8.2      | Uniqueness proof: (1) existence                                                                | 219 |
| 8.2.1    | Regular Borel measures on the projective limit: the uniform measure                            | 220 |
| 8.2.2    | Functional calculus on a projective limit                                                      | 226 |

|           |                                                                                                                                                         |     |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 8.2.3     | + Density and support properties of $\mathcal{A}, \mathcal{A}/\mathcal{G}$ with respect to $\overline{\mathcal{A}}, \overline{\mathcal{A}/\mathcal{G}}$ | 435 |
| 8.2.4     | Spin-network functions and loop representation                                                                                                          | 233 |
| 8.2.5     | Gauge and diffeomorphism invariance of $\mu_0$                                                                                                          | 237 |
| 8.2.6     | + Ergodicity of $\mu_0$ with respect to spatial diffeomorphisms                                                                                         | 242 |
| 8.2.7     | Essential self-adjointness of electric flux momentum operators                                                                                          | 245 |
| 8.3       | Uniqueness proof: (2) uniqueness                                                                                                                        | 246 |
| 8.4       | Uniqueness proof: (3) irreducibility                                                                                                                    | 247 |
| <b>9</b>  | <b>Step IV: (1) implementation and solution of the kinematical constraints</b>                                                                          | 252 |
| 9.1       | Implementation of the Gauß constraint                                                                                                                   | 264 |
| 9.1.1     | Derivation of the Gauß constraint operator                                                                                                              | 264 |
| 9.1.2     | Complete solution of the Gauß constraint                                                                                                                | 266 |
| 9.2       | Implementation of the spatial diffeomorphism constraint                                                                                                 | 269 |
| 9.2.1     | Derivation of the spatial diffeomorphism constraint operator                                                                                            | 269 |
| 9.2.2     | General solution of the spatial diffeomorphism constraint                                                                                               | 271 |
| <b>10</b> | <b>Step IV: (2) implementation and solution of the Hamiltonian constraint</b>                                                                           | 279 |
| 10.1      | Outline of the construction                                                                                                                             | 279 |
| 10.2      | Heuristic explanation for UV finiteness due to background independence                                                                                  | 282 |
| 10.3      | Derivation of the Hamiltonian constraint operator                                                                                                       | 286 |
| 10.4      | Mathematical definition of the Hamiltonian constraint operator                                                                                          | 291 |
| 10.4.1    | Concrete implementation                                                                                                                                 | 291 |
| 10.4.2    | Operator limits                                                                                                                                         | 296 |
| 10.4.3    | Commutator algebra                                                                                                                                      | 300 |
| 10.4.4    | The quantum Dirac algebra                                                                                                                               | 309 |
| 10.5      | The kernel of the Wheeler–DeWitt constraint operator                                                                                                    | 311 |
| 10.6      | The Master Constraint Programme                                                                                                                         | 317 |
| 10.6.1    | Motivation for the Master Constraint Programme in General Relativity                                                                                    | 317 |
| 10.6.2    | Definition of the Master Constraint                                                                                                                     | 320 |
| 10.6.3    | Physical inner product and Dirac observables                                                                                                            | 326 |
| 10.6.4    | Extended Master Constraint                                                                                                                              | 329 |
| 10.6.5    | Algebraic Quantum Gravity (AQG)                                                                                                                         | 331 |
| 10.7      | + Further related results                                                                                                                               | 334 |
| 10.7.1    | The Wick transform                                                                                                                                      | 334 |
| 10.7.2    | Testing the new regularisation technique by models of quantum gravity                                                                                   | 340 |

|                                  |                                                                                                                             |     |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----|
| 10.7.3                           | Quantum Poincaré algebra                                                                                                    | 341 |
| 10.7.4                           | Vasiliev invariants and discrete quantum gravity                                                                            | 344 |
| <b>11</b>                        | <b>Step V: semiclassical analysis</b>                                                                                       | 345 |
| 11.1                             | + Weaves                                                                                                                    | 349 |
| 11.2                             | Coherent states                                                                                                             | 353 |
| 11.2.1                           | Semiclassical states and coherent states                                                                                    | 354 |
| 11.2.2                           | Construction principle: the complexifier method                                                                             | 356 |
| 11.2.3                           | Complexifier coherent states for diffeomorphism-invariant theories of connections                                           | 362 |
| 11.2.4                           | Concrete example of complexifier                                                                                            | 367 |
| 11.2.5                           | Semiclassical limit of loop quantum gravity: graph-changing operators, shadows and diffeomorphism-invariant coherent states | 376 |
| 11.2.6                           | + The infinite tensor product extension                                                                                     | 385 |
| 11.3                             | Graviton and photon Fock states from $L_2(\overline{\mathcal{A}}, d\mu_0)$                                                  | 390 |
| <b>III PHYSICAL APPLICATIONS</b> |                                                                                                                             | 411 |
| <b>12</b>                        | <b>Extension to standard matter</b>                                                                                         | 399 |
| 12.1                             | The classical standard model coupled to gravity                                                                             | 400 |
| 12.1.1                           | Fermionic and Einstein contribution                                                                                         | 401 |
| 12.1.2                           | Yang–Mills and Higgs contribution                                                                                           | 405 |
| 12.2                             | Kinematical Hilbert spaces for diffeomorphism-invariant theories of fermion and Higgs fields                                | 406 |
| 12.2.1                           | Fermionic sector                                                                                                            | 406 |
| 12.2.2                           | Higgs sector                                                                                                                | 411 |
| 12.2.3                           | Gauge and diffeomorphism-invariant subspace                                                                                 | 417 |
| 12.3                             | Quantisation of matter Hamiltonian constraints                                                                              | 418 |
| 12.3.1                           | Quantisation of Einstein–Yang–Mills theory                                                                                  | 419 |
| 12.3.2                           | Fermionic sector                                                                                                            | 422 |
| 12.3.3                           | Higgs sector                                                                                                                | 425 |
| 12.3.4                           | A general quantisation scheme                                                                                               | 429 |
| <b>13</b>                        | <b>Kinematical geometrical operators</b>                                                                                    | 431 |
| 13.1                             | Derivation of the area operator                                                                                             | 432 |
| 13.2                             | Properties of the area operator                                                                                             | 434 |
| 13.3                             | Derivation of the volume operator                                                                                           | 438 |
| 13.4                             | Properties of the volume operator                                                                                           | 447 |
| 13.4.1                           | Cylindrical consistency                                                                                                     | 447 |
| 13.4.2                           | Symmetry, positivity and self-adjointness                                                                                   | 448 |
| 13.4.3                           | Discreteness and anomaly-freeness                                                                                           | 448 |
| 13.4.4                           | Matrix elements                                                                                                             | 449 |
| 13.5                             | Uniqueness of the volume operator, consistency with the flux operator and pseudo-two-forms                                  | 453 |

|                                                              |                                                                   |     |
|--------------------------------------------------------------|-------------------------------------------------------------------|-----|
| 13.6                                                         | Spatially diffeomorphism-invariant volume operator                | 455 |
| <b>14</b>                                                    | <b>Spin foam models</b>                                           | 458 |
| 14.1                                                         | Heuristic motivation from the canonical framework                 | 458 |
| 14.2                                                         | Spin foam models from BF theory                                   | 462 |
| 14.3                                                         | The Barrett–Crane model                                           | 466 |
| 14.3.1                                                       | Plebanski action and simplicity constraints                       | 466 |
| 14.3.2                                                       | Discretisation theory                                             | 472 |
| 14.3.3                                                       | Discretisation and quantisation of BF theory                      | 476 |
| 14.3.4                                                       | Imposing the simplicity constraints                               | 482 |
| 14.3.5                                                       | Summary of the status of the Barrett–Crane model                  | 494 |
| 14.4                                                         | Triangulation dependence and group field theory                   | 495 |
| 14.5                                                         | Discussion                                                        | 502 |
| <b>15</b>                                                    | <b>Quantum black hole physics</b>                                 | 511 |
| 15.1                                                         | Classical preparations                                            | 514 |
| 15.1.1                                                       | Null geodesic congruences                                         | 514 |
| 15.1.2                                                       | Event horizons, trapped surfaces and apparent horizons            | 517 |
| 15.1.3                                                       | Trapping, dynamical, non-expanding and (weakly) isolated horizons | 519 |
| 15.1.4                                                       | Spherically symmetric isolated horizons                           | 526 |
| 15.1.5                                                       | Boundary symplectic structure for SSIHs                           | 535 |
| 15.2                                                         | Quantisation of the surface degrees of freedom                    | 540 |
| 15.2.1                                                       | Quantum U(1) Chern–Simons theory with punctures                   | 541 |
| 15.3                                                         | Implementing the quantum boundary condition                       | 546 |
| 15.4                                                         | Implementation of the quantum constraints                         | 548 |
| 15.4.1                                                       | Remaining U(1) gauge transformations                              | 549 |
| 15.4.2                                                       | Remaining surface diffeomorphism transformations                  | 550 |
| 15.4.3                                                       | Final physical Hilbert space                                      | 550 |
| 15.5                                                         | Entropy counting                                                  | 550 |
| 15.6                                                         | Discussion                                                        | 557 |
| <b>16</b>                                                    | <b>Applications to particle physics and quantum cosmology</b>     | 562 |
| 16.1                                                         | Quantum gauge fixing                                              | 562 |
| 16.2                                                         | Loop Quantum Cosmology                                            | 563 |
| <b>17</b>                                                    | <b>Loop Quantum Gravity phenomenology</b>                         | 572 |
| <b>IV MATHEMATICAL TOOLS AND THEIR CONNECTION TO PHYSICS</b> |                                                                   |     |
| <b>18</b>                                                    | <b>Tools from general topology</b>                                | 577 |
| 18.1                                                         | Generalities                                                      | 577 |
| 18.2                                                         | Specific results                                                  | 581 |

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| <b>19 Differential, Riemannian, symplectic and complex geometry</b> | 585 |
| 19.1 Differential geometry                                          | 585 |
| 19.1.1 Manifolds                                                    | 585 |
| 19.1.2 Passive and active diffeomorphisms                           | 587 |
| 19.1.3 Differential calculus                                        | 590 |
| 19.2 Riemannian geometry                                            | 606 |
| 19.3 Symplectic manifolds                                           | 614 |
| 19.3.1 Symplectic geometry                                          | 614 |
| 19.3.2 Symplectic reduction                                         | 616 |
| 19.3.3 Symplectic group actions                                     | 621 |
| 19.4 Complex, Hermitian and Kähler manifolds                        | 623 |
| <b>20 Semianalytic category</b>                                     | 627 |
| 20.1 Semianalytic structures on $\mathbb{R}^n$                      | 627 |
| 20.2 Semianalytic manifolds and submanifolds                        | 631 |
| <b>21 Elements of fibre bundle theory</b>                           | 634 |
| 21.1 General fibre bundles and principal fibre bundles              | 634 |
| 21.2 Connections on principal fibre bundles                         | 636 |
| <b>22 Holonomies on non-trivial fibre bundles</b>                   | 644 |
| 22.1 The groupoid of equivariant maps                               | 644 |
| 22.2 Holonomies and transition functions                            | 647 |
| <b>23 Geometric quantisation</b>                                    | 652 |
| 23.1 Prequantisation                                                | 652 |
| 23.2 Polarisation                                                   | 662 |
| 23.3 Quantisation                                                   | 668 |
| <b>24 The Dirac algorithm for field theories with constraints</b>   | 671 |
| 24.1 The Dirac algorithm                                            | 671 |
| 24.2 First- and second-class constraints and the Dirac bracket      | 674 |
| <b>25 Tools from measure theory</b>                                 | 680 |
| 25.1 Generalities and the Riesz–Markov theorem                      | 680 |
| 25.2 Measure theory and ergodicity                                  | 687 |
| <b>26 Key results from functional analysis</b>                      | 689 |
| 26.1 Metric spaces and normed spaces                                | 689 |
| 26.2 Hilbert spaces                                                 | 691 |
| 26.3 Banach spaces                                                  | 693 |
| 26.4 Topological spaces                                             | 694 |
| 26.5 Locally convex spaces                                          | 694 |
| 26.6 Bounded operators                                              | 695 |
| 26.7 Unbounded operators                                            | 697 |

|                   |                                                                                         |     |
|-------------------|-----------------------------------------------------------------------------------------|-----|
| 26.8              | Quadratic forms                                                                         | 699 |
| <b>27</b>         | <b>Elementary introduction to Gel'fand theory for Abelian <math>C^*</math>-algebras</b> | 701 |
| 27.1              | Banach algebras and their spectra                                                       | 701 |
| 27.2              | The Gel'fand transform and the Gel'fand isomorphism                                     | 709 |
| <b>28</b>         | <b>Bohr compactification of the real line</b>                                           | 713 |
| 28.1              | Definition and properties                                                               | 713 |
| 28.2              | Analogy with loop quantum gravity                                                       | 715 |
| <b>29</b>         | <b>Operator <math>*</math>-algebras and spectral theorem</b>                            | 719 |
| 29.1              | Operator $*$ -algebras, representations and GNS construction                            | 719 |
| 29.2              | Spectral theorem, spectral measures, projection valued measures, functional calculus    | 723 |
| <b>30</b>         | <b>Refined algebraic quantisation (RAQ) and direct integral decomposition (DID)</b>     | 729 |
| 30.1              | RAQ                                                                                     | 729 |
| 30.2              | Master Constraint Programme (MCP) and DID                                               | 735 |
| <b>31</b>         | <b>Basics of harmonic analysis on compact Lie groups</b>                                | 746 |
| 31.1              | Representations and Haar measures                                                       | 746 |
| 31.2              | The Peter and Weyl theorem                                                              | 752 |
| <b>32</b>         | <b>Spin-network functions for <math>SU(2)</math></b>                                    | 755 |
| 32.1              | Basics of the representation theory of $SU(2)$                                          | 755 |
| 32.2              | Spin-network functions and recoupling theory                                            | 757 |
| 32.3              | Action of holonomy operators on spin-network functions                                  | 762 |
| 32.4              | Examples of coherent state calculations                                                 | 765 |
| <b>33</b>         | <b>+ Functional analytic description of classical connection dynamics</b>               | 770 |
| 33.1              | Infinite-dimensional (symplectic) manifolds                                             | 770 |
| <i>References</i> |                                                                                         | 775 |
| <i>Index</i>      |                                                                                         | 809 |