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This book provides an accessible introduction to the theory of L-functions, empha-
sising their central role in number theory and their direct applications to key results.
Designed to be elementary, it offers readers a clear pathway into the subject, starting
from minimal background. It describes several important classes of L-functions —
Riemann and Dedekind zeta functions, Dirichlet L-functions, and Hecke L-functions
(for characters with finite image) — by showing how they are all special cases of the
construction, due to Artin, of the L-function of a Galois representation. The analytic
properties of abelian L-functions are presented in detail, including the full content of Tates
thesis, which establishes analytic continuation and functional equations via harmonic
analysis. General Hecke L-functions are also discussed, using the modern perspective
of ideles and adéles to connect their analytic theory with the representation-theoretic
approach of Artin’s L-functions. A distinguishing feature of this book is its accessibility:
while largely avoiding arithmetic geometry, it provides introductions to both algebraic
number theory and key aspects of representation theory. This approach ensures that
the material is accessible to both beginning graduate students and advanced under-
graduates. Applications play a central role throughout, highlighting how L-functions
underpin significant results in number theory. The book provides complete proofs of
the prime number theorem, Dirichlet’s theorem on primes in arithmetic progressions,
Chebotarev’s density theorem, and the analytic class number formula, demonstrating
the power of the theory in solving classical problems. It serves as an ideal introduction
for advanced undergraduates and beginning graduate students and can also be a usetul
reference for preparing a course on the subject.
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