

Contents

<i>Preface</i>	<i>page</i>	xiii
<i>Abbreviations and units</i>	<i>page</i>	xiv
<hr/>		
Chapter 1 The tropical environment		1
1.1 The tropics		1
1.2 Climate in the tropics		1
1.3 Biogeographical regions		11
1.4 Chapter summary		17
<hr/>		
Chapter 2 Hot deserts and environmental factors		18
2.1 The Sahara Desert and arid zones of northern Africa		18
2.2 The Namib Desert		22
2.3 Australian deserts		27
2.4 Environmental factors		31
2.5 Water		31
2.6 Limiting factors		34
2.7 Temperature		37
2.8 Salinity		38
2.9 Soils and nutrients		39
2.10 Environmental factors and plant and animal distributions		43
2.11 Desertification or land degradation?		46
2.12 Chapter summary		48
<hr/>		
Chapter 3 Grasslands and primary production		50
3.1 Grass structure and biology		50
3.2 Neotropical grasslands		53
3.3 Light as an energy source		56
3.4 Carbon dioxide uptake by plants		56
3.5 Photosynthesis		57
3.6 Photorespiration		58
3.7 Photosynthetic strategies		60
3.8 Respiration		61
3.9 Environmental factors and photosynthesis		63
3.10 Primary production		64
3.11 Assessment of grassland primary production		64
3.12 Effects of grazing on grass growth		66
3.13 Seasonal variation in grassland primary production		67
3.14 Primary production rates in terrestrial biomes		68
3.15 Chapter summary		71
<hr/>		
Chapter 4 Savanna and population dynamics		72
4.1 Fire and savanna vegetation		72

4.2	Savannas of the world	75
4.3	The Serengeti	78
4.4	Savanna plants and heterogeneity	80
4.5	Animal population dynamics in the Serengeti	81
4.6	Herbivores and herbivory	84
4.7	Principles of population growth	86
4.8	Factors determining population density	91
4.9	Density-dependent mortality factors	93
4.10	Competition theory and the competitive exclusion principle	99
4.11	Predation	100
4.12	Density-independent mortality factors	109
4.13	Reproductive strategies and population growth	109
4.14	Population age structure and life tables	110
4.15	Key factor analysis	117
4.16	Conservation of African wildlife	119
4.17	Ecosystem dynamics and ecological models	121
4.18	Chapter summary	126

Chapter 5 | Lakes, energy flow and biogeochemical cycling 128

5.1	Thermal stratification	128
5.2	Pelagic zone production	143
5.3	Littoral zone producers and primary production	147
5.4	The catchment area concept	152
5.5	Aquatic consumers	154
5.6	The biota of tropical and temperate lakes: a comparison	158
5.7	Food chains and energy flow	159
5.8	Food chain energetics	159
5.9	Trophic levels	160
5.10	Limited length of food chains	163
5.11	Food chain efficiencies	165
5.12	Food web dynamics	166
5.13	Biogeochemical cycles	168
5.14	Quantitative aspects of nutrient supply and cycling	174
5.15	Eutrophication	177
5.16	Aquatic resource management	182
5.17	Chapter summary	184

Chapter 6 | Rivers, floodplains and estuaries: the flood-pulse and river continuum concepts 186

6.1	Nile River	188
6.2	Purari River	195
6.3	Amazon River	199
6.4	<i>Ecological concepts</i>	208
6.5	Estuaries	216
6.6	Chapter summary	219

Chapter 7	Wetlands and succession	
7.1	What are wetlands?	221
7.2	Sudd communities of Lake Naivasha	222
7.3	Rooted emergent swamps of Lake Chilwa	223
7.4	Freshwater herbaceous wetlands: structure and function	225
7.5	Swamp forests	228
7.6	Wetland zonation	229
7.7	Wetland succession	231
7.8	Ecological succession	233
7.9	Community development and assembly	233
7.10	Wetland loss and conservation	234
7.11	Chapter summary	236
<hr/>		
Chapter 8	Tropical rain forests and biodiversity	238
8.1	Biogeography of rain forests	239
8.2	Vegetation structure of tropical rain forests	242
8.3	Phenology and reproduction of tropical forest trees	245
8.4	Life-form concept of plants	247
8.5	Rain-forest animals	248
8.6	Convergent evolution	248
8.7	Plant-animal interactions	249
8.8	Co-evolution	253
8.9	Productivity and nutrient cycling in forests	254
8.10	Micro-climates and resource acquisition	256
8.11	Biological diversity	257
8.12	Why are rain forests so diverse?	262
8.13	Latitudinal gradients and species diversity	262
8.14	Gap theory	264
8.15	Patch dynamics	266
8.16	Tropical deciduous forests and ecotones	269
8.17	Low-diversity tropical rain forests	270
8.18	Deforestation and the loss of biodiversity	270
8.19	Rain-forest conservation	273
8.20	Chapter summary	278
<hr/>		
Chapter 9	Mountains, zonation and community gradients	280
9.1	Tropical mountains	280
9.2	Zonation on tropical mountains	280
9.3	Vegetation zonation on Mount Wilhelm, Papua New Guinea	281
9.4	Altitude zonation in Venezuela	287
9.5	Plant and animal ecophysiology: examples from Mount Kenya	289
9.6	Mountain zonation	294
9.7	Variation in plant and animal communities	296
9.8	Chapter summary	298

Chapter 10	Mangroves, seagrasses and decomposition	299
10.1	Mangroves of Australia and New Guinea	301
10.2	Ecological adaptations of mangroves	302
10.3	Mangrove animals	306
10.4	Mangrove productivity	309
10.5	Seagrasses	310
10.6	Coastal vegetation and organic matter export	311
10.7	Decomposition	313
10.8	Decomposition rates and environmental factors	315
10.9	Detritus food chains	316
10.10	Decomposition in other tropical systems	317
10.11	Coastal zone management	318
10.12	Chapter summary	318
Chapter 11	Coral reefs and community ecology	320
11.1	Coral reef communities	320
11.2	Coral biology	322
11.3	Coral reefs	329
11.4	Coral reef algae	332
11.5	Coral reef herbivores	332
11.6	Coral reef biogeography and biodiversity	336
11.7	Community ecology	339
11.8	Coral reef management and conservation	344
11.9	Chapter summary	348
Chapter 12	Isolated habitats and biogeography: islands in the sea, air and land	349
12.1	Island ecosystems	349
12.2	Krakatau	349
12.3	Dispersal	352
12.4	Colonisation and community assembly	356
12.5	Island biogeography	358
12.6	Speciation	363
12.7	Extinction	368
12.8	Exotic species on islands	370
12.9	Chapter summary	372
Chapter 13	Cities and human ecology	373
13.1	Jakarta, Indonesia	373
13.2	Evolution of human societies	375
13.3	World population growth	377
13.4	Food production	382
13.5	Industrialisation, natural resource use and pollution	388
13.6	Human population growth: consequences and solutions	391
13.7	Conclusions	395
13.8	Chapter summary	395

Chapter 14 | Global ecology: biodiversity conservation, climate change and sustainable development 397

14.1 Temperate and tropical environments 397
14.2 Biodiversity loss 398
14.3 Biodiversity conservation 399
14.4 Global climate change 404
14.5 Sustainable development 409
14.6 Conclusions 410
14.7 Chapter summary 410

Glossary 411
References 425
Index 442

As a student, I was planning to major in biology, environmental sciences or environmental engineering. I have been, over the last 20 years, an explorer of the natural world, and have developed a strong interest in tropical ecology fuelled by a desire to understand the impact we are having on tropical ecosystems and the biodiversity they harbour. The growth in both our numbers and our impact on the environment has led to the depletion and degradation of the world's natural resources. This is not just an environmental issue but one that should concern all people, irrespective of where they live. Ecology, the science that underpins the conservation, management and wise use of natural resources, has become more than a sub-discipline of biology. Its theory and application require an appreciation of biology, chemistry, physics, geology and physical geography. The conservation of tropical ecosystems also has a social dimension and, therefore, effective management of natural resources also draws from the disciplines of economics, political science, psychology, human geography and sociology. This chapter can provide only an introduction to these complex conservation issues.

Tropical ecology is a huge subject, and even limiting it to the tropics leaves far more material to cover than can be covered in a semester or, indeed, in a book to support a course. I am acutely aware that much has been omitted from this book, and selecting what to include has been the biggest challenge in writing this book. I have drawn from my life and work in the tropics, and in New Zealand and Australia. I have tried to provide a reasonably balanced account, including discussions on terrestrial environments, freshwater systems, aquatic environments and the increased human impact on them. Lakes, coral reefs, mangroves, rivers and streams, life in water, all differ markedly from life on land and these differences can be

effectively used to highlight the differences between them. I have tried to provide some examples of how different ecosystems are adapting to climate change, and I wish to thank the following people for reviewing draft chapters: Dr Mark Ashton, University of Oxford; Dr Paul Anderson, University of Hong Kong; Dr Jerry Baillargeon, Smithsonian Institution, Washington, DC; Dr Mark Bush, Max-Planck-Institute for Environmental Research, Potsdam; Dr Michael Cheek, University of Georgia; Dr Geoff Gurr, International Union for the Conservation of Nature, Gurney's Bay, South Africa; Dr Michael Hickey, University of Western Ontario; Dr Michael Hickey, Australian National University; Dr Lance Hill, University of Papua New Guinea; Dr Geoffrey Hope, University of Western Ontario; Dr Robert Meades, United States Geological Survey, Denver, Colorado; Dr David Mitchell, Charles Sturt University, Wagga Wagga; Dr Stephen Mulkey, University of Florida, Gainesville, United States; Dr Nicholas Polunin, University of Newcastle-upon-Tyne, United Kingdom; Professor Ghillean Prance, Kew Gardens, United Kingdom; Dr Robert Rabin, University of Missouri, St. Louis, United States; Dr Michael Rabinowitz, Hope University, Australia; Dr Mark Reid, University of Queensland, Australia; and Dr William Tait, Fordham University, United States. I am grateful to those remaining, however, are my own. I thank Dr Alan Crowder, Mirig Murphy, Susanna and Alan Cuthill, and Mausie at Cambridge University Press for their support and care in guiding the manuscript through the production process.

I acknowledge the Regis Allen Graduate Trust for providing a grant through the International Center for Tropical Ecology at the University of Missouri-St. Louis to cover the cost of illustrating the manuscript and purchasing illustrations. I also thank my wife, Maed, for her invaluable love and support. This book is dedicated to our children and the next generation. I thank the curators of the Royal Botanic Gardens, Kew, and the Natural History Museum, London, for permission to use their images. I thank the University of Missouri-St. Louis for permission to use the illustrations of the tropical plants in this book. I thank the International Center for Tropical Ecology for permission to use the illustrations of the tropical plants in this book. I thank the International Center for Tropical Ecology for permission to use the illustrations of the tropical plants in this book.

University of Missouri-St. Louis
International Center for Tropical Ecology