Contents

Preface xi

	About the Companion Website xiv
1	Introduction to the Chemistry of Natural Waters 1
1.1	Water: Its Properties and Global Cycle 1
1.1.1	Physical and Chemical Properties of Water 1
1.1.1.1	The Global Water Cycle 5
1.2	Chemical Processes in Natural Waters 6
1.2.1	Water and CO ₂ : Acid-Base Reactions 6
1.2.2	The Global Carbon Cycle 7
1.2.3	Weathering Processes: Water, CO ₂ , and Minerals 8
1.2.4	Interactions Between Organisms and Water: Photosynthesis and Respiration 10
1.2.5	The Global Nitrogen Cycle 11
1.2.6	The Global Phosphorus Cycle 12
1.3	Conservation, Thermodynamics, and Kinetics 13
	References 16
2	Conservation Principles and Equilibrium Calculations 17
2.1	Mole Balance Equations 18
2.1.1	Preliminary Notion 18
2.1.2	Definition of Components 19
2.2	Properties of Components 21
2.2.1	Independence of Components 21
2.2.2	Alternative Choices of Components 22
2.2.3	Number of Components 24
2.2.4	Rules for Choosing Components 24
2.2.5	The Electroneutrality Condition 24
2.3	Solving Chemical Equilibrium Problems 25
2.3.1	Equilibrium Composition of Example 2.1 25
2.3.2	A Better Choice of Components for Example 2.1 27
2.3.3	The log C-pH Diagram for Inorganic Carbon 28
2.3.4	The Graphical Solution to Example 2.1 31
2.3.5	Inorganic Carbon Equilibrium with Gas and Solid Phases 32
2.4	Some Practical Considerations 34
2.5	Notation, Symbols, and Units 35

2.5.1	Equal Signs 35
2.5.2	Types of Concentration 35
2.5.3	Concentration Units 36
2.6	Components: A Matter of Terminology and History 38
	Problems 40
	References 42
3	Thermodynamics and Kinetics in Natural Waters 43
3.1	The Free Energy of Chemical Systems 45
3.1.1	Standard Molar Free Energy μ_i^0 46
3.1.2	Concentration Term $(RT \ln X_i)$ 47
3.2	Energetics of Chemical Reactions 48
3.3	Reaction Rates and Mechanisms 50
3.3.1	Encounter Theory 50
3.3.2	Unidirectional Reactions 51
3.3.3	Reversible Reactions 52
3.3.4	Multistep Reactions 54
3.3.5	Activated Complex Theory 54
3.3.6	Enzyme Kinetics 55
3.4	Effects of Ionic Strength on Equilibrium 56
3.4.1	Dilute Solutions: The Debye-Hückel Theory 58
3.4.2	Empirical Formulae for Activity Coefficients at High Ionic Strength 59
3.4.3	Activity Coefficients of Neutral Molecules 61
3.4.4	Nonideal Effects in Mass Law Equations 61
3.5	Effect of Ionic Strength on Kinetics 62
3.6	Effect of Pressure on Equilibrium 63
3.7	Effect of Pressure on Kinetics 65
3.8	Effect of Temperature on Equilibrium 66
3.9	Effect of Temperature on Kinetics 68
3.10	Concentration Gradients in Equilibrium Systems 69
3.10.1	Extended Expression of Molar Free Energy 70
3.10.2	Distribution of Species in a Tall Water Column 70
3.10.3	Chemical Equilibrium in a Tall Water Column 71
	Problems 73 Performed 77
	References 77
4	Acids and Bases: Alkalinity and all in Network West
4.1	Acids and Bases: Alkalinity and pH in Natural Waters 79 Natural Weak Acids and Bases 80
4.2	
4.2.1	
4.2.2	Pure Solutions of CO ₂ : The Equivalence Point 82 Alkalinity: Preliminary Notion 85
4.2.3	A 11 1 1 · · · · · · · · · · · · · · · ·
4.2.4	A 11 _ 1: ', T ' . 1 T C
4.2.5	0.1 0 1 . 10 0
4.3	A '1 D G 1 1 C
4.3.1	
4.3.2	TT C D1 1 . ~
	pH of a Phosphate-Containing Freshwater 94

4.3.3	Use of Ionization Fraction Parameters 95
4.4	Equilibrium with the Gas Phase 97
4.4.1	Equilibrium with Atmospheric CO ₂ 97
4.4.2	Ocean Acidification 101
4.4.3	Other Volatile Species 105
4.4.3.1	Hydrogen Sulfide 105
4.4.3.2	Ammonia 106
4.4.3.3	Sulfur Dioxide (SO ₂) 106
4.4.4	Acid Rain 108
4.4.4.1	The Acidity of Rainwater 108
4.4.4.2	Interactions of Acid Rain with Surface Waters and Soils 110
4.5	Mixing of Two Waters 110
4.6	Effects of Biological Processes on pH and Alkalinity 113
4.6.1	Photosynthesis and Respiration 113
4.6.2	Other Microbial Processes 115
4.7	Humic Acids in Natural Waters 118
4.7.1	Acid-Base Chemistry of Humic Acids 119
4.7.2	Coulombic Interactions 121
4.7.3	Intrinsic Variability in the Acidity of Humates and a Practical Approach 122
4.8	Exchange Between Natural Waters and the Atmosphere 123
4.8.1	Formation of Aerosols at the Ocean Surface (Provided by Luc Deike) 123
4.8.2	Gas Exchange at the Air–Water Interface 124
4.8.3	Ebullition of Supersaturated Gases 127
	Problems 131
	References 135
	Case Study: Disselution of Cadmium in the Girondolfstukey (Basedion and
5	Solid Dissolution and Precipitation: Acquisition and Control of
	Alkalinity 138
5.1	The Chemical Nature of Rocks 140
5.2	The Solubility of the Major Elements in the Upper Continental Crust: Si, Al, and
-01	Fe (+0) 147
5.2.1	The Solubility of Silica 147
5.2.2	The Solubility of Aluminum Hydroxide 148 The Solubility of Ferric Hydroxide 149
5.2.3	The boldonie, of former and
5.3	Alkalinity in Freshwaters: The Solubility of Ca, Mg, Na, and K 150 CO ₂ in Groundwater 153
5.3.1	
5.3.2 5.3.3	Equilibrium with P_{CO_2} and $CaCO_3(s)$ in Soils 153 Seasonal Dissolution and Precipitation of $CaCO_3(s)$ at the Surface of Lakes 155
5.3.4	Equilibrium with P_{CO_2} and Aluminosilicates in Soils 156
5.3.5	Solubility of Minerals as a Function of P_{CO_2} 159
5.3.6	Negative Alkalinity from Sulfidic Waters 160
5.4	The Control of Alkalinity in the Oceans 161
5.4.1	Seawater Alkalinity over Geological Times 161
5.4.2	Alkalinity Variations in the Water Column 163
5.4.3	Ocean Acidification and CaCO ₃ Precipitation 166
	occan richamon and caco 3 ricorpitation 100
	Solubility of Trace Metals 166
5.5 5.6	Solubility of Trace Metals 166 The Phase Rule 176

5.7	Kinetics of Precipitation and Dissolution 178
5.7.1	The Solid-Solution Interface at the Molecular Level 178
5.7.2	Effects of Particle Size 180
5.7.3	Surface- and Transport-Controlled Dissolution 181
5.7.4	Kinetics of Transport-Controlled Dissolution 181
5.7.5	Kinetics of Surface-Controlled Dissolution 182
5.7.6	Precipitation Kinetics 186
5.7.6.1	Kinetics of Crystal Growth 186
5.7.7	Rates of Chemical Weathering 188
	Problems 189
	References 192
6	Complexation 195
6.1	Aqueous Complexes 196
6.1.1	Thermodynamics of Complex Formation 199
6.1.2	Electronic Configurations of Metals and Interactions in Metal Complexes 200
6.1.3	Quantification of Metal Speciation 204
6.2	Interactions Among Major Ions in Natural Waters 204
6.2.1	Interactions Among Major Ions in Seawater 204
6.2.2	Interactions Among Major Ions in Brines 207
6.3	Inorganic Complexation of Trace Metals 207
6.3.1	Inorganic Complexation of Copper and Zinc in a Freshwater 208
6.3.2	Inorganic Complexation of Copper and Zinc in Seawater 209
6.3.3	Inorganic Complexes of Trace Metals in Oxic Waters 210
6.3.4	Inorganic Complexes of Trace Metals in Sulfidic Waters 212
6.3.5	Case Study: Dissolution of Cadmium in the Gironde Estuary (Based on
	Kraepiel et al. [15]) 214
6.4	Organic Complexation 217
6.4.1	Trace Metal Complexation by Strong Anthropogenic Chelating Agents 221
6.4.1.1	Complexation of Copper and Zinc by EDTA in a Freshwater 221
6.4.1.2	Complexation of Copper and Zinc by EDTA in Seawater 223
6.4.2	Trace Metal Complexation by Strong Biogenic Chelating Agents 225
6.4.2.1	Iron Complexation by Siderophores 226
6.4.2.2	Metal-Detoxifying Molecules 229
6.4.3	Trace Metal Complexation by Humic Compounds 231
6.4.4	Organometallic Compounds 233
6.5	Complexation Kinetics 236
6.5.1	Kinetics of Complex Formation and Dissociation 239
6.5.2	Kinetics of Metal- and Ligand-Exchange Reactions 242
6.5.3	Kinetics of Double-Exchange Reactions 243
6.5.4	Case Study: Kinetics of Exchange of Zn with Fe Complexed to EDTA in a River
	(Based on Xue et al. [108]) 244
6.6	Trace Metal Bioavailability to Microorganisms: The Case of Zn 247
6.6.1	Zn Requirements in Phytoplankton 248
6.6.2	Zn Complexation and Bioavailability 249

6.6.4	Zinc Bioavailability and Acidification of Seawater 251
	Problems 253
	References 255
7	Oxidation-Reduction 262
7.1	Definitions, Notations, and Conventions 264
7.1.1	The Electron as a Component 264
7.1.2	Half-Redox Reactions 264
7.1.3	Electron Activities and Redox Potentials 267
7.2	Comparison Among Redox Couples 274
7.2.1	Redox Reactions as Irreversible Reactions 274
7.2.2	pe's of Dominant Redox Couples 275
7.2.2.1	The pe of Oxic Waters: The Oxygen/Water Couple 277
7.2.2.2	The pe of Sulfidic Waters: The Sulfate/Sulfide Couple 277
7.2.2.3	The pe of the Organic Matter/CO ₂ Couple 277
7.2.2.4	The pe of the CH ₄ /CO ₂ Couple 278
7.2.2.5	The pe's of the N_2/NH_4^+ and the NO_3^-/N_2 Couples 278
7.3	Energetics of Microbial Processes 280
7.3.1	Energetics of Microbial Reactions 281
7.3.2	Temporal Sequences and Spatial Distributions of Redox Reactions 286
7.3.3	Case Study: The Chemistry of Lake Rot During Stratification 287
7.3.3.1	Dissolved Oxygen and Carbon in Lake Rot 288
7.3.3.2	Nitrogen Species in Lake Rot 289
7.3.3.3	Sulfur Species in Lake Rot 291
7.3.3.4	Iron and Manganese in Lake Rot 291
7.3.4	Redox in Sediments of Lake Greifen 291
7.3.5	Other Redox Couples in the Environment 293
7.4	Redox Equilibrium Calculations 293
7.4.1	Anoxic Conditions at the Bottom of a Lake 293
7.4.2	Redox in Hydrothermal Oceanic Vents 296
7.4.2.1	The Chemistry of the Vent in the Sulfidic Region 296
7.4.2.2	The Transition Between the Sulfidic and the Oxic Domains 299
7.4.2.3	The Chemistry of the Vent in the Oxic Region 299
7.5	pe-pH Diagrams 300
7.5.1	The Water, O ₂ , H ₂ System 301
7.5.2	The Sulfate-Sulfide System 303
7.5.3	Metals in Carbonate and Sulfur-Bearing Waters 306
7.6	Reactive Redox Species in Natural Waters 309
7.6.1	Input, Absorption, and Attenuation of Light in Natural Waters 309
7.6.2	General Principles of Photochemistry 311
7.6.3	Photochemical Oxidation of Dissolved Organic Matter 312
7.6.4	Biological Production of O_2^- and H_2O_2 313
7.6.5	Direct Photoredox Reactions of Trace Metals 315
7.6.5.1	Photoreduction of Dissolved Fe(III) 316

Electrochemical Measurements of Bioavailable Zn 250

6.6.3

7.6.5.2	Photoreduction of Mn(IV) 317
7.6.5.3	Photochemical Reduction of Dissolved Cu(II) 319
7.7	Redox Kinetics 319
7.7.1	Rate Laws for Redox Reactions 320
7.7.2	Redox Reaction Mechanisms 321
7.7.2.1	Outer-Sphere Electron Transfer 323
7.7.2.2	Inner-Sphere Electron Transfer 324
7.7.3	Microbial Redox Reactions 325
7.8	The Bioavailability of Iron in Natural Waters 326
7.8.1	The Bioavailability of Unchelated Fe(III) to Eukaryotic Phytoplankton 326
7.8.2	Uptake of Fe(III) via a Reductive Mechanism 327
7.8.3	Uptake of Fe(III) via a Phytotransferrin 327
7.8.4	Endocytosis Uptake of Fe(III)-Siderophore Complexes 328
7.8.5	Uptake of Fe from Fe-(hydr)oxides by Trichodesmium 329
	Problems 330
	References 331
	se pe of the CH ₄ /CO ₂ Couple 278
8	Reactions on Solid Surfaces 336
8.1	Aquatic Particles 337
8.2	Coordinative Properties of Surfaces 340
8.2.1	General Considerations 340
8.2.1.1	Acid-Base and Coordinative Properties of Oxide Surfaces 341
8.2.1.2	Long-Range Coulombic Interactions at Surfaces 341
8.2.1.3	Other Interactions at Surfaces 343
8.2.2	Adsorption Isotherms 343
8.2.3	The Surface Complexation Model for Adsorption 344
8.3	Chemical Reactions at (Conceptually) Isolated Surface Sites 345
8.4	Electrostatic Interactions on Surfaces 351
8.4.1	Including the Coulombic Term in Surface Complexation Calculations 354
8.5	Acid-Base Reactions on Hydrous Ferric Oxide (HFO) 357
8.6	Adsorption of Metals and Ligands on Hydrous Ferric Oxide (HFO) 364
8.7	Other Reactions Involving Solid Phases 367
8.7.1	Adsorption on Other Solid Phases 367
8.7.2	Adsorption on Particulate Organic Matter 368
8.7.3	Partitioning of Solutes into Bulk Particulate Phases 368
8.7.3.1	Ion Exchange 368
8.7.3.2	Solid Solution 369
8.7.3.3	Organic Film Solvation 369
8.8	Kinetic Considerations 369
8.8.1	Adsorption Kinetics 370
8.8.2	Effects of Adsorption on the Kinetics of Surface Reactions 370
	Problems 371
	References 372