

CAMBRIDGE TRACTS
IN THEORETICAL
COMPUTER SCIENCE

Introducing Stone–Priestley duality theory and its applications to logic and theoretical computer science, this book equips graduate students and researchers with the theoretical background necessary for reading and understanding current research in the area.

After giving a thorough introduction to the algebraic, topological, logical, and categorical aspects of the theory, the book covers two advanced applications in computer science, namely in domain theory and automata theory. These topics are at the forefront of active research seeking to unify semantic methods with more algorithmic topics in finite model theory. Frequent exercises punctuate the text, with hints and references provided.

“This book introduces efficiently Stone–Priestley duality theory for bounded distributive lattices, thereby laying solid mathematical foundations for applications in mathematics and computer science. Readers interested in the fields of domain theory and automata theory will see the general duality theory bearing fruit and opening doors to further applications.”

Jorge Almeida, *Universidade do Porto*

“This book is a textbook and also a research monograph. For undergraduates, there is the basic duality; for postgraduates, applications in algebra, topology, and logic, and to theoretical computer science. Then, there are research themes to develop. The applications to CS are exciting and not published as a book before.”

Mirna Džamonja, *IRIF, CNRS-Université de Paris*

CAMBRIDGE
UNIVERSITY PRESS

ISBN 978-1-009-34969-7

9 781009 349697

<i>Preface</i>	<i>page</i> vii
<i>Acknowledgments</i>	xv
1 Order and Lattices	1
1.1 Preorders, Partial Orders, and Suprema and Infima	1
1.2 Lattices	9
1.3 Duality for Finite Distributive Lattices	18
2 Topology and Order	29
2.1 Topological Spaces	29
2.2 Topology and Order	37
2.3 Compact Ordered Spaces	42
3 Priestley Duality	51
3.1 Prime Filters and Ideals	51
3.2 Priestley Duality	61
3.3 Boolean Envelopes and Boolean Duality	76
4 Duality Methods	86
4.1 Free Distributive Lattices	87
4.2 Quotients and Subs	96
4.3 Unary Operators	112
4.4 Modal Algebras and Kripke Completeness	121
4.5 Operators of Implication Type	130
4.6 Heyting Algebras and Esakia Duality	139
4.7 Boolean Closure and Alternating Chains	149
5 Categorical Duality	154
5.1 Definitions and Examples of Categories	154
5.2 Constructions on Categories	158
5.3 Constructions inside Categories	173

5.4	Priestley Duality Categorically	188
6	Omega-Point Duality	196
6.1	Spectral Spaces and Stone Duality	196
6.2	The Omega-Point Adjunction	200
6.3	The Omega-Point Duality	205
6.4	Duality for Spaces of Relations and Functions	211
7	Domain Theory	227
7.1	Domains and Hoffmann–Lawson Duality	230
7.2	Dcpos and Domains That Are Spectral	246
7.3	Bifinite Domains	256
7.4	Domain Theory in Logical Form	265
8	Automata Theory	273
8.1	The Syntactic Monoid as a Dual Space	274
8.2	Regular Languages and Free Profinite Monoids	292
8.3	Equations, Subalgebras, and Profinite Monoids	309
8.4	Open Multiplication	325
	<i>Bibliography</i>	330
	<i>Notation</i>	339
	<i>Index</i>	346