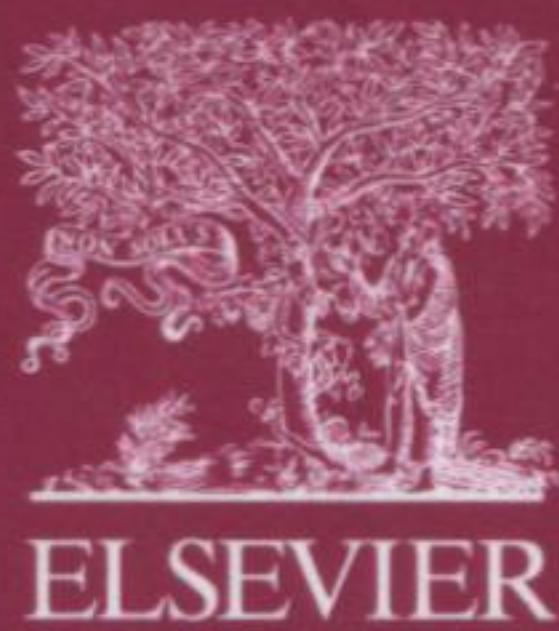


**COGNITIVE DATA SCIENCE IN SUSTAINABLE COMPUTING**

**SERIES EDITOR: ARUN KUMAR SANGAIAH**

# **ARTIFICIAL INTELLIGENCE IN FUTURE MINING**


**VOLUME EDITORS**

**AMIR RAZMJOU AND MOHSEN ASADNIA**

*Artificial Intelligence in Future Mining* explores the latest developments in the use of artificial intelligence (AI) in mining and how it will impact the industry's future. The application of data science and AI in future mining involves using advanced technologies to optimize operations, improve decision-making, and enhance safety and sustainability in the industry. After a brief history of AI in mining, the editors look closely at different AI techniques used in mining. The following chapters explore ocean mining, brine mining, and urban mining. With an eye towards sustainability, the editors then review the future of wastewater mining and green mining. This book wraps up with chapters on safety and risk, resource planning, and a larger discussion of the opportunities and challenges of mining with AI in the future. This book is a must-have for researchers and professionals who find themselves at the intersection of mining, engineering, and data science.

## **KEY FEATURES**

- Case studies on the application of data processing, the Internet of Things, and AI in environmental sensing
- Each chapter ends with an in-depth discussion of the future implications of AI on the mining industry



**ACADEMIC PRESS**

An imprint of Elsevier  
[elsevier.com/books-and-journals](http://elsevier.com/books-and-journals)

ISBN 978-0-443-28911-8



|                      |      |
|----------------------|------|
| List of contributors | xiii |
| Preface              | xvii |
| Introduction         | xix  |

## 1. The evolution of artificial intelligence in mining

*Hamid Sarkheil, Mohammad Delnavaz and Javad Farahbakhsh*

|                                                                                                                      |    |
|----------------------------------------------------------------------------------------------------------------------|----|
| 1.1 Introduction                                                                                                     | 2  |
| 1.1.1 Definition of artificial intelligence and its significance in the mining industry                              | 4  |
| 1.1.2 Brief overview of the history of mineral mining and technological advancements                                 | 5  |
| 1.2 Early applications of artificial intelligence in mining                                                          | 6  |
| 1.2.1 Historical overview of early artificial intelligence and automation in mining                                  | 7  |
| 1.2.2 Early attempts at data analysis and optimization in mineral mining                                             | 8  |
| 1.3 Applications of artificial intelligence in mineral mining method selection                                       | 10 |
| 1.4 Artificial intelligence application for operation automation in mineral mining                                   | 11 |
| 1.4.1 Application of artificial intelligence in mineral prospecting and exploration                                  | 12 |
| 1.4.2 Application of artificial intelligence in mine planning                                                        | 13 |
| 1.4.3 Application of artificial intelligence in machine operation in mineral mining                                  | 15 |
| 1.4.4 Application of artificial intelligence in drilling and blasting in mineral mining                              | 16 |
| 1.4.5 Application of artificial intelligence in mineral processing                                                   | 17 |
| 1.4.6 Application of artificial intelligence in environmental issues in mineral mining                               | 18 |
| 1.5 Artificial intelligence in ethical and green mineral processing                                                  | 20 |
| 1.6 The climate-smart mining                                                                                         | 21 |
| 1.6.1 Climate mitigation in climate-smart mining: strategies and impact                                              | 24 |
| 1.6.2 Climate adaptation strategies in climate-smart mining: building resilience for sustainable resource extraction | 26 |

|                   |                                                                                                              |    |
|-------------------|--------------------------------------------------------------------------------------------------------------|----|
| 1.6.3             | Reducing material impacts in climate-smart mining: strategies for sustainable resource extraction            | 28 |
| 1.6.4             | Creating marketing opportunities in climate-smart mining: sustainable resource extraction in a green economy | 29 |
| 1.6.5             | Renewable energy integration in climate-smart mining: a path to sustainable resource extraction              | 32 |
| 1.6.6             | Resource efficiency in climate-smart mining: optimizing sustainable resource extraction                      | 34 |
| 1.6.7             | Reuse and recycling of low-carbon minerals in climate-smart mining: towards a circular resource economy      | 37 |
| 1.6.8             | Leveraging carbon finance instruments in climate-smart mining: a path to sustainable resource extraction     | 38 |
| 1.6.9             | Energy efficiency in the mineral value chain: a cornerstone of climate-smart mining                          | 40 |
| 1.6.10            | Innovation waste solutions in climate-smart mining: advancing sustainable resource extraction                | 43 |
| 1.6.11            | Low-carbon mineral supply chain management: a key driver of climate-smart mining                             | 45 |
| 1.6.12            | Robust geological data management: a cornerstone of climate-smart mining                                     | 48 |
| 1.6.13            | Gender and multistakeholder engagement: key drivers of climate-smart mining                                  | 50 |
| 1.6.14            | Strong governance and regulatory framework: cornerstones of climate-smart mining                             | 55 |
| 1.6.15            | Forest-smart mining with landscape management: a cornerstone of climate-smart mining                         | 60 |
| 1.6.16            | De-risking investments for low-carbon minerals: a key driver of climate-smart mining                         | 62 |
| <b>References</b> |                                                                                                              | 67 |

## 2. Advances in acid mine drainage management through artificial intelligence

*Mokhinabonu Mardonova, Muhammad Kashif Shahid, Rouzbeh Abbassi, Jun Wei Lim, Shukra Raj Paudel and Bandita Mainali*

|            |                                                   |     |
|------------|---------------------------------------------------|-----|
| <b>2.1</b> | <b>Introduction</b>                               | 78  |
| <b>2.2</b> | <b>Acid mine drainage processes</b>               | 79  |
| 2.2.1      | Formation and characteristics                     | 79  |
| 2.2.2      | Sources                                           | 83  |
| 2.2.3      | Mine impacted water classification                | 85  |
| 2.2.4      | Environmental impact control and prevention       | 93  |
| <b>2.3</b> | <b>Management of acid mine drainage processes</b> | 95  |
| 2.3.1      | Acid mine drainage management challenges          | 95  |
| 2.3.2      | Corporate governance and frameworks               | 100 |

|                   |                                                                      |     |
|-------------------|----------------------------------------------------------------------|-----|
| 2.3.3             | Classification frameworks for mine waste materials                   | 102 |
| <b>2.4</b>        | <b>Circular economy and resource recirculation</b>                   | 110 |
| 2.4.1             | Water                                                                | 111 |
| 2.4.2             | Sulfuric acid, metals, and rare earth elements                       | 113 |
| 2.4.3             | Sludge and mining residues reuse                                     | 114 |
| <b>2.5</b>        | <b>Sustainability and environmental impact assessment aspects</b>    | 114 |
| 2.5.1             | Sustainability and climate change in acid mine drainage              | 114 |
| 2.5.2             | Considerations in emission analysis of acid mine drainage treatment  | 121 |
| <b>2.6</b>        | <b>Artificial intelligence in acid mine drainage risk prediction</b> | 124 |
| 2.6.1             | Operational approaches to acid mine drainage prediction              | 127 |
| 2.6.2             | Artificial intelligence                                              | 144 |
| <b>2.7</b>        | <b>Conclusions</b>                                                   | 156 |
| <b>References</b> |                                                                      | 157 |

### **3. Advancing mining maintenance: integrating machine learning for proactive corrosion management**

*Jacques Lepage, Kaveh Ghouchani, Javad Mohammadpour, Fatemeh Salehi and Rouzbeh Abbassi*

|                   |                                                          |     |
|-------------------|----------------------------------------------------------|-----|
| <b>3.1</b>        | <b>Introduction</b>                                      | 179 |
| <b>3.2</b>        | <b>Pipeline corrosion in mining</b>                      | 181 |
| <b>3.3</b>        | <b>Internal corrosion</b>                                | 181 |
| <b>3.4</b>        | <b>External corrosion</b>                                | 182 |
| <b>3.5</b>        | <b>Machine learning application</b>                      | 183 |
| <b>3.6</b>        | <b>Overview of adopted machine learning techniques</b>   | 184 |
| <b>3.7</b>        | <b>Supervised machine learning algorithms</b>            | 184 |
| 3.7.1             | Neural networks and deep learning                        | 185 |
| 3.7.2             | Ensemble, tree-based, and boosting methods               | 185 |
| 3.7.3             | Regression algorithms                                    | 185 |
| 3.7.4             | Support vector methods                                   | 186 |
| 3.7.5             | Time series and similarity-based methods                 | 186 |
| <b>3.8</b>        | <b>Unsupervised machine learning algorithm</b>           | 187 |
| <b>3.9</b>        | <b>Reinforcement machine learning algorithm</b>          | 187 |
| <b>3.10</b>       | <b>Machine learning techniques in corrosion modeling</b> | 187 |
| <b>3.11</b>       | <b>Conclusions</b>                                       | 190 |
| <b>References</b> |                                                          | 190 |

### **4. Revolutionizing brine mining through artificial intelligence-assisted techniques**

*Arash Khosravi, Maryam Ashkpour and Farideh Abdollahi*

|            |                                                                             |     |
|------------|-----------------------------------------------------------------------------|-----|
| <b>4.1</b> | <b>Introduction</b>                                                         | 196 |
| <b>4.2</b> | <b>Types and definitions of brine resources and brine mining techniques</b> | 197 |
| 4.2.1      | Categories of brine resources                                               | 197 |
| 4.2.2      | Industrial processes for brine mining                                       | 201 |

|                                                                                                   |     |
|---------------------------------------------------------------------------------------------------|-----|
| <b>4.3 Principles and benefits of artificial intelligence-assisted brine mining</b>               | 203 |
| 4.3.1 General concept of artificial intelligence-techniques                                       | 204 |
| 4.3.2 Increasing efficiency and productivity using artificial intelligence-techniques             | 206 |
| 4.3.3 Cost reduction                                                                              | 208 |
| 4.3.4 Improving safety and environmental sustainability                                           | 208 |
| <b>4.4 Artificial intelligence-assisted techniques in brine mining case studies</b>               | 210 |
| 4.4.1 Exploration and production                                                                  | 211 |
| 4.4.2 Robotics and automation                                                                     | 212 |
| 4.4.3 Monitoring, controlling and predictive maintenance                                          | 214 |
| 4.4.4 Characterization of brine                                                                   | 215 |
| <b>4.5 Challenges and limitations of artificial intelligence-assisted brine mining techniques</b> | 217 |
| 4.5.1 Data availability and quality                                                               | 217 |
| 4.5.2 Technical expertise and training                                                            | 218 |
| <b>4.6 Future directions for artificial intelligence-assisted brine mining techniques</b>         | 218 |
| 4.6.1 Integration with other technologies                                                         | 219 |
| 4.6.2 Collaboration and knowledge sharing                                                         | 219 |
| 4.6.3 Regulatory frameworks and standards                                                         | 219 |
| <b>Acknowledgments</b>                                                                            | 220 |
| <b>References</b>                                                                                 | 220 |
| <b>5. Urban mining and artificial intelligence: challenges and opportunities</b>                  | 229 |
| <i>Sorour Ayoubian Markazi, Shokat Akbarnezhad, Negar Karimian Ardestani and Milad Razbin</i>     |     |
| <b>5.1 Introduction</b>                                                                           | 229 |
| <b>5.2 Importance of urban mining</b>                                                             | 231 |
| <b>5.3 Resources of urban mining</b>                                                              | 232 |
| 5.3.1 E-waste in urban mining                                                                     | 232 |
| 5.3.2 Water/wastewater treatment in urban mining                                                  | 233 |
| 5.3.3 Building in urban mining                                                                    | 235 |
| <b>5.4 Artificial intelligence approach in urban mining</b>                                       | 236 |
| <b>5.5 Conclusion</b>                                                                             | 244 |
| <b>References</b>                                                                                 | 245 |
| <b>6. Wastewater mining: a new frontier for artificial intelligence in mining</b>                 | 249 |
| <i>Hoda Khoshvaght and Mehdi Khiadani</i>                                                         |     |
| <b>6.1 Introduction</b>                                                                           | 249 |
| <b>6.2 Understanding mining wastewater</b>                                                        | 252 |
| 6.2.1 Overview of mining wastewater                                                               | 253 |
| 6.2.2 Mining wastewater characteristics                                                           | 254 |

|                      |                                                                            |            |
|----------------------|----------------------------------------------------------------------------|------------|
| 6.2.3                | Environmental impact of mining activities and wastewater                   | 255        |
| 6.2.4                | Economic benefit of mining wastewater                                      | 259        |
| 6.2.5                | Mining wastewater treatment techniques                                     | 264        |
| <b>6.3</b>           | <b>Role of artificial intelligence in mining wastewater</b>                | <b>271</b> |
| 6.3.1                | Artificial intelligence in process controlling and optimization            | 272        |
| 6.3.2                | Artificial intelligence in outlier detection                               | 273        |
| 6.3.3                | Artificial intelligence in water quality monitoring                        | 281        |
| 6.3.4                | Artificial intelligence in mineral extraction                              | 284        |
| 6.3.5                | Popular artificial intelligence algorithm in water and wastewater research | 285        |
| 6.3.6                | Artificial intelligence case studies in mining                             | 286        |
| <b>6.4</b>           | <b>Challenges and future directions</b>                                    | <b>289</b> |
| 6.4.1                | Challenges                                                                 | 289        |
| 6.4.2                | Future directions                                                          | 289        |
| <b>6.5</b>           | <b>Conclusions</b>                                                         | <b>294</b> |
| <b>AI disclosure</b> |                                                                            | <b>295</b> |
| <b>Abbreviations</b> |                                                                            | <b>295</b> |
| <b>References</b>    |                                                                            | <b>297</b> |

## **7. Green mining with artificial intelligence: a path to sustainability** 309

*Mahdi Pouresmaeli, Yasaman Boroumand, Meysam Habibi, Reza Maleki, Mohammad Ataei and Ali Nouri Qarahasanlou*

|            |                                                                                                                                                    |            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <b>7.1</b> | <b>Introduction</b>                                                                                                                                | <b>310</b> |
| 7.1.1      | The notion of sustainable development                                                                                                              | 311        |
| 7.1.2      | Necessity of sustainable mining                                                                                                                    | 312        |
| 7.1.3      | Mining's effects on metrics for sustainable development                                                                                            | 312        |
| <b>7.2</b> | <b>Sustainable development goal-based artificial intelligence and Internet of Things introduction in the mining sector</b>                         | <b>314</b> |
| 7.2.1      | Advanced mining automation                                                                                                                         | 318        |
| <b>7.3</b> | <b>Artificial intelligence/Internet of Things's impact on sustainable development goal in the mining sector</b>                                    | <b>321</b> |
| <b>7.4</b> | <b>Effect of Internet of Things and artificial intelligence on robots and automation in the mining sector according to sustainable development</b> | <b>322</b> |
| 7.4.1      | Robotics and automation's effects on economic metrics in mining operations                                                                         | 323        |
| 7.4.2      | Robotics and automation's effects on social metrics in mining operations                                                                           | 324        |
| 7.4.3      | The effect of robots and automation on environmental indicators in mining operations                                                               | 327        |
| <b>7.5</b> | <b>Capabilities and limitations of artificial intelligence in sustainable development for mine designing and planning</b>                          | <b>329</b> |
| 7.5.1      | Feature engineering and artificial intelligence for sustainable development in mine planning and design                                            | 331        |

|           |                                                                                                     |     |
|-----------|-----------------------------------------------------------------------------------------------------|-----|
| 7.5.2     | Data preprocessing and artificial intelligence feature engineering                                  | 334 |
| 7.5.3     | Feature selection in materials                                                                      | 334 |
| 7.5.4     | Artificial intelligence usage and its effect on sustainable development                             | 336 |
| 7.6       | <b>The future of robotics and automation in mining</b>                                              | 343 |
| 7.7       | <b>Discussion</b>                                                                                   | 344 |
| 7.8       | <b>Conclusion</b>                                                                                   | 345 |
|           | <b>References</b>                                                                                   | 347 |
| <b>8.</b> | <b>Enhancing safety and minimizing risk in mining processes with artificial intelligence</b>        | 355 |
|           | <i>Armaghan Javid, Mohammad Zarkesh, Yasaman Boroumand and Mohammad Al-Fawa'reh</i>                 |     |
| 8.1       | <b>Introduction</b>                                                                                 | 355 |
| 8.1.1     | Challenges and risks associated with mining processes                                               | 356 |
| 8.1.2     | Role of artificial intelligence in revolutionizing safety practices                                 | 357 |
| 8.2       | <b>Real-time monitoring and predictive analytics</b>                                                | 358 |
| 8.2.1     | Artificial intelligence-powered sensors for real-time data collection                               | 358 |
| 8.2.2     | Predictive analytics for identifying potential safety hazards                                       | 363 |
| 8.2.3     | Vision-based data analysis                                                                          | 369 |
| 8.3       | <b>Autonomous vehicles and equipment for hazardous environments</b>                                 | 372 |
| 8.3.1     | Benefits of autonomous vehicles and equipment in dangerous areas                                    | 373 |
| 8.3.2     | Reducing human exposure to risky tasks through automation                                           | 374 |
| 8.3.3     | Different types of autonomous vehicles and equipment used in mining                                 | 375 |
| 8.3.4     | AI-driven navigation and obstacle avoidance systems                                                 | 376 |
| 8.4       | <b>Conclusion</b>                                                                                   | 377 |
|           | <b>References</b>                                                                                   | 378 |
| <b>9.</b> | <b>The future of the mining industry with artificial intelligence</b>                               | 383 |
|           | <i>Walid K. Hasan, Mohammad Al-Fawa'reh, Matt Madelatparvar and Nima Fakhralmobasher</i>            |     |
| 9.1       | <b>Introduction</b>                                                                                 | 384 |
| 9.2       | <b>Recent advancements in artificial intelligence and autonomous solutions in mining operations</b> | 385 |
| 9.2.1     | Automating extraction: robotics and artificial intelligence in underground mining                   | 386 |

|       |                                                                                              |     |
|-------|----------------------------------------------------------------------------------------------|-----|
| 9.2.2 | Artificial intelligence for autonomous mining trucks and uncrewed vehicles                   | 387 |
| 9.2.3 | Connected quarries: Internet of Things and data integration for mining efficiency            | 389 |
| 9.2.4 | Waste to wealth: artificial intelligence-enabled solutions for efficient tailings management | 390 |
| 9.3   | <b>Optimizing operations</b>                                                                 | 390 |
| 9.4   | <b>Hazard management</b>                                                                     | 390 |
| 9.5   | <b>Potential applications of artificial intelligence in mining industry</b>                  | 392 |
| 9.5.1 | Automating extraction: robotics and artificial intelligence in underground mining            | 392 |
| 9.5.2 | Connected quarries: Internet of Things and data integration for mining efficiency            | 395 |
| 9.5.3 | Waste to wealth: artificial intelligence-enabled solutions for efficient tailings management | 397 |
| 9.5.4 | Challenges in implementing artificial intelligence in mining industry                        | 399 |
| 9.5.5 | Automating extraction: robotics and artificial intelligence in underground mining            | 399 |
| 9.5.6 | Autonomous mining trucks and uncrewed vehicles                                               | 400 |
| 9.5.7 | Connected quarries: Internet of Things and data integration for mining efficiency            | 401 |
| 9.6   | <b>Conclusion and future directions</b>                                                      | 402 |
|       | <b>References</b>                                                                            | 403 |
|       | <b>Index</b>                                                                                 | 409 |