

“This book accomplishes the impossible task: It explains to a mathematician, in a language that a mathematician can understand, what is meant by a quantum field theory from a physicist’s point of view. A great book by a great mathematician.”

– Sourav Chatterjee, Stanford University

“Talagrand has done an admirable job of making the difficult subject of quantum field theory as concrete and understandable as possible. The book progresses slowly and carefully but still covers an enormous amount of material. Talagrand has made every effort to assist the reader on a rewarding journey though the world of quantum fields.”

– Brian Hall, University of Notre Dame

“A presentation of the fundamental ideas of quantum field theory in a manner that is both accessible and mathematically accurate seems like an impossible dream. Well, not anymore! This book goes from basic notions to advanced topics with patience and care. It is an absolute delight to anyone looking for a friendly introduction to the beauty of quantum field theory and its mysteries.”

– Shahar Mendelson, Australian National University

“I have been motivated to try and learn about quantum field theories for some time but struggled to find a presentation in a language that I as a mathematician could understand. This book was perfect for me: I was able to make progress without any initial preparation and felt very comfortable and reassured by the style of exposition.”

– Ellen Powell, Durham University

“Michel Talagrand takes a decidedly elementary approach to answering the question in the title of his book, assuming little more than basic analysis. In addition to learning what quantum field theory is, the reader will encounter beautiful mathematics that is hard to find anywhere else in such clear pedagogical form. It is sure to remain a reference for many decades.”

– Philippe Sosoe, Cornell University

Cover image: The three shapes of diagrams (Fig. 13.15 in the book). Courtesy of the author.

Cover design by Holly Johnson

CAMBRIDGE
UNIVERSITY PRESS
www.cambridge.org

ISBN 978-1-316-51027-8

9 781316 510278

Part I Basics

1	Preliminaries	9
1.1	Dimension	9
1.2	Notation	10
1.3	Distributions	12
1.4	The Delta Function	14
1.5	The Fourier Transform	17
2	Basics of Non-relativistic Quantum Mechanics	21
2.1	Basic Setting	22
2.2	Measuring Two Different Observables on the Same System	27
2.3	Uncertainty	28
2.4	Finite versus Continuous Models	30
2.5	Position State Space for a Particle	31
2.6	Unitary Operators	38
2.7	Momentum State Space for a Particle	39
2.8	Dirac's Formalism	40
2.9	Why Are Unitary Transformations Ubiquitous?	46
2.10	Unitary Representations of Groups	47
2.11	Projective versus True Unitary Representations	49
2.12	Mathematicians Look at Projective Representations	50
2.13	Projective Representations of \mathbb{R}	51
2.14	One-parameter Unitary Groups and Stone's Theorem	52
2.15	Time-evolution	59

2.16	Schrödinger and Heisenberg Pictures	62
2.17	A First Contact with Creation and Annihilation Operators	64
2.18	The Harmonic Oscillator	66
3	Non-relativistic Quantum Fields	73
3.1	Tensor Products	73
3.2	Symmetric Tensors	76
3.3	Creation and Annihilation Operators	78
3.4	Boson Fock Space	82
3.5	Unitary Evolution in the Boson Fock Space	84
3.6	Boson Fock Space and Collections of Harmonic Oscillators	86
3.7	Explicit Formulas: Position Space	88
3.8	Explicit Formulas: Momentum Space	92
3.9	Universe in a Box	93
3.10	Quantum Fields: Quantizing Spaces of Functions	94
4	The Lorentz Group and the Poincaré Group	102
4.1	Notation and Basics	102
4.2	Rotations	107
4.3	Pure Boosts	108
4.4	The Mass Shell and Its Invariant Measure	111
4.5	More about Unitary Representations	115
4.6	Group Actions and Representations	118
4.7	Quantum Mechanics, Special Relativity and the Poincaré Group	120
4.8	A Fundamental Representation of the Poincaré Group	122
4.9	Particles and Representations	125
4.10	The States $ p\rangle$ and $ p\rangle$	128
4.11	The Physicists' Way	129
5	The Massive Scalar Free Field	132
5.1	Intrinsic Definition	132
5.2	Explicit Formulas	140
5.3	Time-evolution	142
5.4	Lorentz Invariant Formulas	143
6	Quantization	145
6.1	The Klein-Gordon Equation	146
6.2	Naive Quantization of the Klein-Gordon Field	147
6.3	Road Map	150
6.4	Lagrangian Mechanics	151
6.5	From Lagrangian Mechanics to Hamiltonian Mechanics	156

6.6	Canonical Quantization and Quadratic Potentials	161
6.7	Quantization through the Hamiltonian	163
6.8	Ultraviolet Divergences	164
6.9	Quantization through Equal-time Commutation Relations	165
6.10	Caveat	172
6.11	Hamiltonian	173
7	The Casimir Effect	176
7.1	Vacuum Energy	176
7.2	Regularization	177
Part II Spin		181
8	Representations of the Orthogonal and the Lorentz Group	183
8.1	The Groups $SU(2)$ and $SL(2, \mathbb{C})$	183
8.2	A Fundamental Family of Representations of $SU(2)$	187
8.3	Tensor Products of Representations	190
8.4	$SL(2, \mathbb{C})$ as a Universal Cover of the Lorentz Group	192
8.5	An Intrinsically Projective Representation	195
8.6	Deprojectivization	199
8.7	A Brief Introduction to Spin	199
8.8	Spin as an Observable	200
8.9	Parity and the Double Cover $SL^+(2, \mathbb{C})$ of $O^+(1, 3)$	201
8.10	The Parity Operator and the Dirac Matrices	204
9	Representations of the Poincaré Group	208
9.1	The Physicists' Way	209
9.2	The Group \mathcal{P}^*	211
9.3	Road Map	212
9.3.1	How to Construct Representations?	213
9.3.2	Surviving the Formulas	213
9.3.3	Classifying the Representations	214
9.3.4	Massive Particles	214
9.3.5	Massless Particles	214
9.3.6	Massless Particles and Parity	215
9.4	Elementary Construction of Induced Representations	215
9.5	Variegated Formulas	217
9.6	Fundamental Representations	223
9.6.1	Massive Particles	223
9.6.2	Massless Particles	223
9.7	Particles, Spin, Representations	228

9.8	Abstract Presentation of Induced Representations	232
9.9	Particles and Parity	235
9.10	Dirac Equation	236
9.11	History of the Dirac Equation	238
9.12	Parity and Massless Particles	240
9.13	Photons	245
10	Basic Free Fields	250
10.1	Charged Particles and Anti-particles	251
10.2	Lorentz Covariant Families of Fields	253
10.3	Road Map I	255
10.4	Form of the Annihilation Part of the Fields	256
10.5	Explicit Formulas	260
10.6	Creation Part of the Fields	262
10.7	Microcausality	264
10.8	Road Map II	267
10.9	The Simplest Case ($N = 1$)	268
10.10	A Very Simple Case ($N = 4$)	268
10.11	The Massive Vector Field ($N = 4$)	269
10.12	The Classical Massive Vector Field	271
10.13	Massive Weyl Spinors, First Attempt ($N = 2$)	273
10.14	Fermion Fock Space	275
10.15	Massive Weyl Spinors, Second Attempt	279
10.16	Equation of Motion for the Massive Weyl Spinor	281
10.17	Massless Weyl Spinors	283
10.18	Parity	284
10.19	Dirac Field	285
10.20	Dirac Field and Classical Mechanics	288
10.21	Majorana Field	293
10.22	Lack of a Suitable Field for Photons	293
Part III Interactions		297
11	Perturbation Theory	299
11.1	Time-independent Perturbation Theory	299
11.2	Time-dependent Perturbation Theory and the Interaction Picture	303
11.3	Transition Rates	307
11.4	A Side Story: Oscillating Interactions	310
11.5	Interaction of a Particle with a Field: A Toy Model	312

12	Scattering, the Scattering Matrix and Cross-Sections	322
12.1	Heuristics in a Simple Case of Classical Mechanics	323
12.2	Non-relativistic Quantum Scattering by a Potential	324
12.3	The Scattering Matrix in Non-relativistic Quantum Scattering	330
12.4	The Scattering Matrix and Cross-Sections, I	333
12.5	Scattering Matrix in Quantum Field Theory	343
12.6	Scattering Matrix and Cross-Sections, II	345
13	The Scattering Matrix in Perturbation Theory	351
13.1	The Scattering Matrix and the Dyson Series	351
13.2	Prologue: The Born Approximation in Scattering by a Potential	353
13.3	Interaction Terms in Hamiltonians	354
13.4	Prickliness of the Interaction Picture	355
13.5	Admissible Hamiltonian Densities	357
13.6	Simple Models for Interacting Particles	359
13.7	A Computation at the First Order	361
13.8	Wick's Theorem	365
13.9	Interlude: Summing the Dyson Series	367
13.10	The Feynman Propagator	369
13.11	Redefining the Incoming and Outgoing States	373
13.12	A Computation at Order Two with Trees	373
13.13	Feynman Diagrams and Symmetry Factors	379
13.14	The ϕ^4 Model	384
13.15	A Closer Look at Symmetry Factors	387
13.16	A Computation at Order Two with One Loop	389
13.17	One Loop: A Simple Case of Renormalization	392
13.18	Wick Rotation and Feynman Parameters	395
13.19	Explicit Formulas	401
13.20	Counter-terms, I	403
13.21	Two Loops: Toward the Central Issues	404
13.22	Analysis of Diagrams	406
13.23	Cancellation of Infinities	409
13.24	Counter-terms, II	414
14	Interacting Quantum Fields	420
14.1	Interacting Quantum Fields and Particles	421
14.2	Road Map I	422
14.3	The Gell-Mann–Low Formula and Theorem	423
14.4	Adiabatic Switching of the Interaction	430
14.5	Diagrammatic Interpretation of the Gell-Mann–Low Theorem	436

14.6	Road Map II	440
14.7	Green Functions and S -matrix	441
14.8	The Dressed Propagator in the Källén–Lehmann Representation	447
14.9	Diagrammatic Computation of the Dressed Propagator	453
14.10	Mass Renormalization	457
14.11	Difficult Reconciliation	460
14.12	Field Renormalization	462
14.13	Putting It All Together	467
14.14	Conclusions	469
Part IV Renormalization		471
15	Prologue: Power Counting	473
15.1	What Is Power Counting?	473
15.2	Weinberg’s Power Counting Theorem	480
15.3	The Fundamental Space $\ker \mathcal{L}$	483
15.4	Power Counting in Feynman Diagrams	484
15.5	Proof of Theorem 15.3.1	489
15.6	A Side Story: Loops	490
15.7	Parameterization of Diagram Integrals	492
15.8	Parameterization of Diagram Integrals by Loops	494
16	The Bogoliubov–Parasiuk–Hepp–Zimmermann Scheme	496
16.1	Overall Approach	497
16.2	Simple Examples	498
16.3	Canonical Flow and the Taylor Operation	500
16.4	Subdiagrams	503
16.5	Forests	504
16.6	Renormalizing the Integrand: The Forest Formula	506
16.7	Diagrams That Need Not Be 1-PI	510
16.8	Interpretation	510
16.9	Specificity of the Parameterization	512
17	Counter-terms	514
17.1	What Is the Counter-term Method?	515
17.2	A Very Simple Case: Coupling Constant Renormalization	516
17.3	Mass and Field Renormalization: Diagrammatics	518
17.4	The BPHZ Renormalization Prescription	524
17.5	Cancelling Divergences with Counter-terms	525
17.6	Determining the Counter-terms from BPHZ	527
17.7	From BPHZ to the Counter-term Method	531

17.8	What Happened to Subdiagrams?	535
17.9	Field Renormalization, II	538
18	Controlling Singularities	542
18.1	Basic Principle	542
18.2	Zimmermann's Theorem	546
18.3	Proof of Proposition 18.2.12	556
18.4	A Side Story: Feynman Diagrams and Wick Rotations	560
19	Proof of Convergence of the BPHZ Scheme	563
19.1	Proof of Theorem 16.1.1	563
19.2	Simple Facts	565
19.3	Grouping the Terms	567
19.4	Bringing Forward Cancellation	575
19.5	Regular Rational Functions	578
19.6	Controlling the Degree	583
Part V Complements		591
Appendix A Complements on Representations		593
A.1	Projective Unitary Representations of \mathbb{R}	593
A.2	Continuous Projective Unitary Representations	596
A.3	Projective Finite-dimensional Representations	598
A.4	Induced Representations for Finite Groups	600
A.5	Representations of Finite Semidirect Products	604
A.6	Representations of Compact Groups	608
Appendix B End of Proof of Stone's Theorem		612
Appendix C Canonical Commutation Relations		616
C.1	First Manipulations	616
C.2	Coherent States for the Harmonic Oscillator	618
C.3	The Stone–von Neumann Theorem	621
C.4	Non-equivalent Unitary Representations	627
C.5	Orthogonal Ground States!	632
Appendix D A Crash Course on Lie Algebras		635
D.1	Basic Properties and $\mathfrak{so}(3)$	635
D.2	Group Representations and Lie Algebra Representations	639
D.3	Angular Momentum	641
D.4	$\mathfrak{su}(2) = \mathfrak{so}(3)!$	642

D.5	From Lie Algebra Homomorphisms to Lie Group Homomorphisms	644
D.6	Irreducible Representations of $SU(2)$	646
D.7	Decomposition of Unitary Representations of $SU(2)$ into Irreducibles	650
D.8	Spherical Harmonics	652
D.9	$\mathfrak{so}(1, 3) = \mathfrak{sl}_{\mathbb{C}}(2)!$	654
D.10	Irreducible Representations of $SL(2, \mathbb{C})$	656
D.11	QFT Is Not for the Meek	658
D.12	Some Tensor Representations of $SO^{\uparrow}(1, 3)$	660
Appendix E Special Relativity		664
E.1	Energy–Momentum	664
E.2	Electromagnetism	666
Appendix F Does a Position Operator Exist?		668
Appendix G More on the Representations of the Poincaré Group		671
G.1	A Fun Formula	671
G.2	Higher Spin: Bargmann–Wigner and Rarita–Schwinger	672
Appendix H Hamiltonian Formalism for Classical Fields		677
H.1	Hamiltonian for the Massive Vector Field	677
H.2	From Hamiltonians to Lagrangians	678
H.3	Functional Derivatives	679
H.4	Two Examples	681
H.5	Poisson Brackets	682
Appendix I Quantization of the Electromagnetic Field through the Gupta–Bleuler Approach		685
Appendix J Lippmann–Schwinger Equations and Scattering States		692
Appendix K Functions on Surfaces and Distributions		697
Appendix L What Is a Tempered Distribution Really?		698
L.1	Test Functions	698
L.2	Tempered Distributions	699
L.3	Adding and Removing Variables	701
L.4	Fourier Transforms of Distributions	703
Appendix M Wightman Axioms and Haag’s Theorem		704
M.1	The Wightman Axioms	704
M.2	Statement of Haag’s Theorem	710

M.3	Easy Steps	711
M.4	Wightman Functions	714
Appendix N	Feynman Propagator and Klein-Gordon Equation	721
N.1	Contour Integrals	721
N.2	Fundamental Solutions of Differential Equations	723
Appendix O	Yukawa Potential	726
Appendix P	Principal Values and Delta Functions	729
<i>Solutions to Selected Exercises</i>		731
<i>Reading Suggestions</i>		732
<i>References</i>		733
<i>Index</i>		738