

CONTENTS

	PAGE
PREFACE	V
LIST OF TABLES	xv
THE MEANING OF SYMBOLS USED THROUGHOUT THE WORK	xvii

CHAPTER I

INTRODUCTION	1
Principle of action of steam turbine—The simple impulse steam turbine—The pressure-compounded impulse turbine—Simple velocity-compounded impulse turbine—Pressure-velocity-compounded turbine—Pure reaction turbine—Axial-flow impulse-reaction turbine—The radial-flow double-motion reaction turbine—Combination turbines	

CHAPTER II

PROPERTIES OF STEAM	15
Introduction—Unit of heat—Unit of work—Heat and work—Relationship between temperature and vapour pressure—Sensible heat of water—Latent heat—Heat of generation—Dryness fraction—Superheated steam—The enthalpy function—The enthalpy of water—The enthalpy of steam—Specific volume of steam—Examples	

CHAPTER III

ENTROPY DIAGRAMS	37
The entropy function—The temperature-entropy diagram for steam—The enthalpy-entropy diagram—T- ϕ and ϕ -I diagrams for compressed water—Examples	

CHAPTER IV

THEORETICAL STEAM TURBINE CYCLE	50
Definition of cycle—Actual steam turbine cycle—Rankine cycle for steam initially saturated—Rankine cycle for steam initially superheated—Superheated steam cycle with superheated exhaust—Thermal efficiency ratio—Examples	

CHAPTER V

THE FLOW OF STEAM THROUGH NOZZLES	68
Introduction—Equation of continuity—Steady flow equation for turbine, nozzle, blades, etc.—Calculation of nozzle area in general case of adiabatic and frictionless flow—Adiabatic equation for	

CONTENTS

PAGE

steam—Alternative method of calculating velocity of expanding steam—Proof of the existence of a critical pressure in nozzle flow—Physical explanation of critical pressure—Maximum discharge of saturated steam—Mouth area of convergent-divergent nozzles—Maximum discharge of superheated steam—Effect of friction in nozzle flow—Experimental measurements of steam discharge through nozzles—Supersaturation in steam turbine nozzles—Equations for supersaturated steam—The Wilson line—Jet deflection in turbine nozzles—Examples

CHAPTER VI

STEAM NOZZLE RESEARCH 103

Introduction—Reaction method of measuring velocity—Impulse method of measuring velocity—Search tube method of determining pressure distribution in a nozzle—Stodola's search tube experiments—Experimental results obtained with reaction apparatus—Institution of Mechanical Engineers' steam nozzles research—Apparatus—Results of tests

CHAPTER VII

THE FLOW OF STEAM THROUGH IMPULSE TURBINE BLADES 120

Velocity diagrams for impulse turbine—Forces on blades—Influence of ratio of blade speed to steam speed on blade efficiency in single-stage turbine—Gross stage efficiency—Efficiency of multi-stage impulse turbine with single-row wheels—Impulse blade sections—Choice of blade angles—Experiments on impulse turbine blades—Velocity-compounded impulse turbine—Velocity diagram for typical velocity-compounded wheel—Most economical ratio of blade speed to steam speed for a two-row wheel—Blade heights in velocity-compounded wheels—Advantages and disadvantages of velocity-compounding—Examples

CHAPTER VIII

THE FLOW OF STEAM THROUGH IMPULSE-REACTION TURBINE BLADES 156

The meaning of impulse-reaction—Degree of reaction—Impulse-reaction turbine with similar blade sections and half-degree reaction (Parsons turbine)—Height of reaction blading—Stage efficiency of impulse-reaction turbine with half-degree reaction—Examples

CHAPTER IX

INTERNAL LOSSES IN STEAM TURBINES 169

Introductory—Disc friction—Partial admission losses—Gland leakage losses—Flow of steam through labyrinth packing—Hydraulic glands—Advantages and disadvantages of hydraulic glands—Residual velocity loss—Examples

CHAPTER X

STATE POINT LOCUS AND REHEAT FACTOR 186

Stage efficiency of impulse turbines—State point locus on ϕ -I diagram for a single stage of an impulse turbine—State point

locus for multi-stage turbine—Condition curves—Correction for terminal velocity—Reheat factor—Reheat factor for an expansion with a uniform adiabatic index and a constant-stage efficiency—Reheat factors for steam expanding wholly in the superheat region—Reheat factors for steam which is initially dry and saturated and expands in thermal equilibrium—Correction for finite number of stages—Reheat factors for steam expanding partly in the superheated state and partly in the saturated state—Internal efficiency—Examples

CHAPTER XI

REGENERATIVE FEED-HEATING 202

Introductory—Single-stage heating—Multi-stage heating—General notes on feed-heating—Examples

CHAPTER XII

REHEATING AND WATER-EXTRACTION CYCLES 214

Flow of wet steam in nozzles and blades—Correction to condition curve for wetness—Erosion of blades—Reheating—Reheating in practice—Regenerative water-extraction cycle—Examples

CHAPTER XIII

TURBINE PERFORMANCE AT VARYING LOADS 238

Methods of governing—Throttle governing—Pressure distribution at varying loads with throttle governing—Throttle governing in reaction turbines—Nozzle control governing—Nozzle-box pressures with nozzle control governing—Condition curve with nozzle control governing—Comparison of throttle and nozzle control governing—By-pass governing—Theory of by-pass governing—By-pass governing of reaction turbines—Examples

CHAPTER XIV

MIXED-PRESSURE TURBINES 261

Low-pressure turbines—The Larderello natural steam power plant—Mixed-pressure turbine—Conditions of operation of mixed-pressure turbine—Theory of heat accumulator—Examples

CHAPTER XV

BACK-PRESSURE AND PASS-OUT TURBINES 273

Introductory—Back-pressure turbines—Pass-out turbine—Operation of pass-out turbine with single extraction—Steam consumption curves of pass-out turbine—Examples

CHAPTER XVI

CONSTRUCTION OF NOZZLES AND DIAPHRAGMS 287

Introductory—First-stage convergent nozzle—Materials and preparation of nozzle guide blades—Built-up nozzle—Diaphragm

nozzles—The de Laval nozzle—Machined type of nozzle—"Cast-in" type of convergent-divergent nozzle—Built-up nozzle—Loss due to steam entering blades obliquely and special form of nozzle to minimize such loss

CHAPTER XVII

CONSTRUCTION OF TURBINE BLADES AND BLADE ATTACHMENTS 302

Centrifugal stress in turbine blades of uniform cross-section—Bending stresses in symmetrical impulse blades of uniform cross-section—Graphics of blade sections—Bending stresses in reaction blades—Special form of long blades—General notes on the attachment of turbine blades—De Laval blade attachment—Inverted-T attachment—Stresses in wheel rims—Serrated blade root—Fitting of blades in wheel—Blade attachment for high-pressure Curtis wheel—Straddle attachment—Modified straddle attachment—Side entry blades—Attachment of shrouding strip—Attachment of Parsons reaction turbine blades—Parsons end-tightened blading—Parsons integral blades—Blade materials—Examples

CHAPTER XVIII

CONSTRUCTION OF TURBINE ROTORS 337

De Laval rotors—Construction of disc rotors—Mounting of wheels on shafts—Rotors machined from solid forgings—Rotors for reaction turbines—Brown Boveri drum rotor—Brown Boveri welded rotor—Balancing of the steam thrust on the moving blades of reaction turbines—Proportions of dummy balance pistons—Couplings

CHAPTER XIX

STRESSES IN TURBINE ROTORS 359

Introductory—Stress in thin rotating ring—Stresses in turbine rotors of the drum type—Stresses in rotating discs of variable thickness, derivation of general equations—Disc of constant thickness—Continuous disc of constant thickness—Disc of constant thickness with central hole—Stresses in turbine wheel of constant thickness—Disc of hyperbolic section—The disc of constant stress—Effect of holes in discs—Pre-stressing by overspeeding—Materials and working stresses—Examples

CHAPTER XX

THE CRITICAL SPEED OF TURBINE ROTORS 392

Definition—Balancing—Small-diameter shaft supporting a single wheel—Rayleigh's approximate solution for the fundamental frequency of a single-span beam or shaft—Uniform shaft with uniformly distributed load, ends freely supported—Other critical speeds—Uniform shaft with uniformly distributed loads, ends fixed—Comparison of "free" and "fixed" ends of shafts—Dunkerley's semi-empirical formula for the first critical speed of a uniform shaft carrying a number of concentrated loads—Critical speed of a shaft of variable cross-section and loaded by a number of concentrated loads—Relationship between critical speed and maximum static deflection—Approximate determination of spindle diameter—Examples

CONTENTS

xiii

CHAPTER XXI

	PAGE
CONSTRUCTION OF CYLINDERS	416

Form of cylinder—Joints and bolting—Nozzle-box construction—Construction of exhaust end—Cylinder supports—Materials

CHAPTER XXII

GLANDS AND PACKING DEVICES	430
--------------------------------------	-----

Diaphragm glands—External glands of the labyrinth type—Forms of labyrinth packing—Carbon ring glands—Packing of balance pistons in Parsons turbines

CHAPTER XXIII

BEARINGS AND LUBRICATION	444
------------------------------------	-----

Introduction—Beauchamp Tower's experiments—Conditions essential for film lubrication—The journal bearing—Construction of journal bearings—Materials—Design of journal bearings—The journal centre locus—Conditions during stopping and starting—Turning gear—Thrust bearings—Plain and bevelled collar bearings—Tilting pad thrust bearings—Construction of Michell thrust bearings—Plain collar thrust bearing with fixed inclined thrust surfaces—Forced lubrication systems

CHAPTER XXIV

SPEED AND OUTPUT OF STEAM TURBINES	481
--	-----

Relationship between cumulative heat drop, mean diameter, speed of rotation, and number of stages in impulse turbines—Relationship between cumulative heat drop, mean diameter, speed of rotation, and number of stages in reaction turbines—Comparison of pressure-compounded and velocity-compounded turbines—Relationship between output, speed, and blade velocity in impulse turbines—Relationship between output, speed, and blade velocity in reaction turbines—Turbine output and stress in last row of blades—Carry-over loss—Methods of increasing the limiting output of steam turbines—Multi-exhaust turbines—The Baumann multi-exhaust turbine—Large-powered turbines with elements running at different speeds—Examples

CHAPTER XXV

THE LJUNGSTRÖM TURBINE	511
----------------------------------	-----

Theory of the Ljungström turbine—Optimum ratio of blade speed to steam speed—Calculation of blade lengths—Relationship between cumulative heat drop, speed of rotation, number of blade rings, and diameter of blade rings in the Ljungström turbine—General description—Blade construction—Disc construction—Balancing arrangements—Shaft glands—General notes

CHAPTER XXVI

HIGH-PRESSURE TURBINES	539
----------------------------------	-----

Limitations imposed by properties of materials—Effect of steam pressure on thermal efficiency for a given upper limit of temperature—Primary turbines—53,000 kW turbine operating at 1,900 lb. per square inch

CHAPTER XXVII

	PAGE
TEST RESULTS	555

Objects of testing—Test apparatus—Correction factors—Tests on single-wheel de Laval turbines—Tests on 15,000 kW impulse turbine—Tests on 35,000 kW impulse turbine—Tests on 11,000 kW impulse turbine—Tests on 10,000 kW impulse turbine operating with steam at 1,000° F.—Tests on 1,000 kW back-pressure combination turbine—Tests on 36,000 kW steam turbine operating with steam at 1,700 lb. per square inch absolute and with live steam reheating—Tests on a 40,000 kW Parsons turbine with flue-gas reheating—Test results for Ljungström turbines

CHAPTER XXVIII

GOVERNORS AND GOVERNOR GEARS	587
--	-----

Introduction—The governor—Simple governor without relay—Simple throttle governor with oil relay—Speeder gear—Alternative form of relay gear—The throttle valve—Flow of superheated steam through throttle valves—Design of simple throttle valve—Modified linkages to give a closer approach to straight-line regulation—Design of shaped throttle valve—Nozzle control governor gear—Oil pressure governing without linkage—Compound oil relay—Governor gear for mixed-pressure turbine—Governor gear for pass-out turbine—Fluid pressure governors—Early Parsons air governor—Westinghouse fluid pressure governor—Westinghouse fluid pressure governor with governor transformer—Speeder gear

ANSWERS TO EXAMPLES	636
NAME INDEX	641
SUBJECT INDEX	643

INSETS

105,000 KW STEAM TURBO-ALTERNATOR	<i>Frontispiece</i>
	<i>Facing page</i>
METROPOLITAN-VICKERS TURBINE WITH BAUMANN MULTI-EXHAUST ARRANGEMENT	504
SECTION THROUGH I.P. AND L.P. TURBINES OF PARSONS 51,000 KW TURBO-ALTERNATOR	506
2,500 KW WESTINGHOUSE TURBINE, WITH OIL GOVERNOR	626
DETAILS OF THROTTLE VALVES AND GOVERNOR GEAR FOR 40,000 KW WESTINGHOUSE TURBINE	630