

Undergraduate Texts in Mathematics

Andreas Klappenecker · Hyunyoung Lee

Discrete Structures

The aim of this text is to introduce discrete mathematics to beginning students of mathematics or computer science. It does this by bringing some coherency into the seemingly incongruent subjects that compose discrete math, such as logic, set theory, algebra, and combinatorics. It emphasizes their theoretical foundations and illustrates proofs along the way. The book prepares readers for the analysis of algorithms by discussing asymptotic analysis and a discrete calculus for sums. The book also deduces combinatorial methods from the foundations that are laid out. Unlike other texts on this subject, there is a greater emphasis on foundational material that leads to a better understanding. To further assist the reader in grasping and practicing concepts, roughly 690 exercises are provided at various levels of difficulty. Readers are encouraged to study the examples in the text and solve as many of the exercises as possible.

The text is intended for freshman or sophomore undergraduate students in mathematics, computer science, or similar majors. The assumed background is precalculus. The chapter dependency chart included is designed to help students, independent readers, and instructors follow a systematic path for learning and teaching the material, with the option to explore material in later chapters.

ISBN 978-3-031-73433-5

9 783031 734335

► springer.com

I Discrete Structures	1
1 Introduction	3
1.1 Knight's Tour	3
1.2 Notes	10
2 Mathematical Arguments	11
2.1 Statements	11
2.2 Logical Operations	13
2.3 Logical Equivalence	20
2.4 Logical Consequence	25
2.5 Formal Arguments	28
2.6 Predicates and Quantifiers	34
2.7 Negations	39
2.8 Proofs	42
2.9 Notes	50
3 Sets	51
3.1 Background and Motivation	51
3.2 Fundamental Concepts	52
3.3 Intersections and Unions	60
3.4 Differences and Symmetric Differences	63
3.5 Cartesian Products	67
3.6 Relations	69
3.7 Functions	72
3.8 Numbers	78
3.9 Cardinality	82
3.10 Notes	88

4 Proofs by Induction	89
4.1 Perfect Squares	89
4.2 Bernoulli's Inequality	93
4.3 Fibonacci Numbers	95
4.4 Geometric Series	97
4.5 Binomial Theorem	99
4.6 Strong Induction	101
*4.7 Well-founded Induction	106
*4.8 Recursion	117
*4.9 Recursively Defined Sets	122
4.10 Notes	131
5 Equivalence Relations	133
5.1 Generalities	133
5.2 Integers	139
5.3 Modular Arithmetic	140
5.4 Rational Numbers	142
5.5 Notes	144
6 Partial Orders and Lattices	145
6.1 Partial Orders	145
6.2 Strict Order	147
6.3 Cover Relations and Hasse Diagrams	149
6.4 Dilworth's Theorem	152
6.5 Lower and Upper Bounds	157
6.6 Extensions of Partial Orders	161
6.7 Monotonic Functions	164
6.8 Lattices	166
6.9 Notes	169
7 Floor and Ceiling Functions	171
7.1 Rounding Up and Down	171
7.2 Divisibility and Primes	177
7.3 Functions of Floors and Ceilings	180
7.4 Notes	184
8 Number Theory	185
8.1 Divisibility	185
8.2 The Greatest Common Divisor	187
8.3 Linear Diophantine Equations	191
8.4 Linear Congruence Equations	196
8.5 The Chinese Remainder Theorem	198
8.6 The RSA Public Key Cryptosystem	202
8.7 Notes	205

II Summation and Asymptotics	207
9 Sums	209
9.1 A Motivating Example	209
9.2 Difference Calculus	211
9.3 Falling Factorial Powers	217
9.4 Stirling Numbers	221
9.5 The Fundamental Theorem of Summation	224
*9.6 Analysis of Programs	231
9.7 Notes	235
10 Asymptotic Analysis	237
10.1 Asymptotic Equality	237
10.2 Limit Superior and Limit Inferior	243
10.3 Asymptotically Tight Bounds	250
10.4 Asymptotic Upper Bounds	254
10.5 Asymptotic Lower Bounds	259
10.6 Analysis of Algorithms	260
10.7 Notes	264
III Combinatorics	265
11 Counting	267
11.1 Fundamental Counting Principles	267
11.2 Permutations and Combinations	273
11.3 Combinatorial Proofs	276
11.4 Selections with Repetitions	284
11.5 Set Partitions	288
11.6 The Inclusion-Exclusion Principle	290
11.7 Pigeonhole Principle	296
11.8 Notes	299
12 Generating Functions	301
12.1 The Basic Concept	301
12.2 Operations on Generating Functions	303
12.3 Elementary Generating Functions	311
12.4 Giving Change	315
13 Recurrence Relations	319
13.1 Recurrence Relations	319
13.2 A Motivating Example	323
13.3 Fibonacci Sequence	325
13.4 Partial Fractions	328
13.5 Reciprocal Polynomials	331
13.6 Linear Homogeneous Recurrence Relations	333

13.7 Characteristic Polynomials	336
13.8 Inhomogeneous Linear Recurrence Relations	339
13.9 Catalan Numbers	343
13.10 Notes	347
14 Graphs	349
14.1 Undirected Graphs	349
14.2 Common Graphs	354
14.3 Connected Graphs	358
14.4 Trees	362
14.5 Planar Graphs	364
14.6 Graph Coloring	367
14.7 Hamiltonian Cycles and Paths	374
15 Probability Theory	381
15.1 Probability Spaces	381
15.2 Combinatorial Probability	385
15.3 Conditional Probabilities	389
15.4 Independence	394
15.5 Random Variables	398
15.6 Expectation	401
15.7 The Probabilistic Method	406
15.8 Notes	411
Bibliography	413
Index	419