Vyhledávat v databázi titulů je možné dle ISBN, ISSN, EAN, č. ČNB, OCLC či vlastního identifikátoru. Vyhledávat lze i v databázi autorů dle id autority či jména.
Projekt ObalkyKnih.cz sdružuje různé zdroje informací o knížkách do jedné, snadno použitelné webové služby. Naše databáze v tuto chvíli obsahuje 3150393 obálek a 950589 obsahů českých a zahraničních publikací. Naše API využívá většina knihoven v ČR.
Rok: 2006
ISBN: 9780521860925
OKCZID: 110015389
Citace (dle ČSN ISO 690):
DO, Kim-Anh, ed., MÜLLER, Peter, ed. a VANNUCCI, Marina, ed. Bayesian inference for gene expression and proteomics. 1st ed. Cambridge: Cambridge University Press, c2006. xviii, 437 s.
The interdisciplinary nature of bioinformatics presents a challenge in integrating concepts, methods, software, and multi-platform data. Although there have been rapid developments in new technology and an inundation of statistical methodology and software for the analysis of microarray gene expression arrays, there exist few rigorous statistical methods for addressing other types of high-throughput data, such as proteomic profiles that arise from mass spectrometry experiments. This book discusses the development and application of Bayesian methods in the analysis of high-throughput bioinformatics data, from medical research and molecular and structural biology. The Bayesian approach has the advantage that evidence can be easily and flexibly incorporated into statistical models. A basic overview of the biological and technical principles behind multi-platform high-throughput experimentation is followed by expert reviews of Bayesian methodology, tools, and software for single group inference, group comparisons, classification and clustering, motif discovery and regulatory networks, and Bayesian networks and gene interactions.