Vyhledávat v databázi titulů je možné dle ISBN, ISSN, EAN, č. ČNB, OCLC či vlastního identifikátoru. Vyhledávat lze i v databázi autorů dle id autority či jména.
Projekt ObalkyKnih.cz sdružuje různé zdroje informací o knížkách do jedné, snadno použitelné webové služby. Naše databáze v tuto chvíli obsahuje 3150518 obálek a 950589 obsahů českých a zahraničních publikací. Naše API využívá většina knihoven v ČR.
Rok: 1996
ISBN: 9780821805640
OKCZID: 110207263
This monograph contains a proof of the Bestvina-Handel Theorem (for any automorphism of a free group of rank $n$, the fixed group has rank at most $n$ ) that to date has not been available in book form. The account is self-contained, simplified, purely algebraic, and extends the results to an arbitrary family of injective endomorphisms. Let $F$ be a finitely generated free group, let $\phi$ be an injective endomorphism of $F$, and let $S$ be a family of injective endomorphisms of $F$. By using the Bestvina-Handel argument with graph pullback techniques of J. R. Stallings, the authors show that, for any subgroup $H$ of $F$, the rank of the intersection $H\cap \mathrm {Fix}(\phi )$ is at most the rank of $H$. They deduce that the rank of the free subgroup which consists of the elements of $F$ fixed by every element of $S$ is at most the rank of $F$. The topological proof by Bestvina-Handel is translated into the language of groupoids, and many details previously left to the reader are meticulously verified in this text.