Vyhledávat v databázi titulů je možné dle ISBN, ISSN, EAN, č. ČNB, OCLC či vlastního identifikátoru. Vyhledávat lze i v databázi autorů dle id autority či jména.
Projekt ObalkyKnih.cz sdružuje různé zdroje informací o knížkách do jedné, snadno použitelné webové služby. Naše databáze v tuto chvíli obsahuje 3150393 obálek a 950589 obsahů českých a zahraničních publikací. Naše API využívá většina knihoven v ČR.
Rok: 2004
ISBN: 9780821835128
OKCZID: 110313462
Citace (dle ČSN ISO 690):
MAZUR, Barry. Kolyvagin systems. Providence, R.I.: American Mathematical Society, 2004. vii, 96 s. Memoirs of the American Mathematical Society, no. 799.
Since their introduction by Kolyvagin, Euler systems have been used in several important applications in arithmetic algebraic geometry. For a $p$-adic Galois module $T$, Kolyvagin's machinery is designed to provide an upper bound for the size of the Selmer group associated to the Cartier dual $T^*$. Given an Euler system, Kolyvagin produces a collection of cohomology classes which he calls 'derivative' classes. It is these derivative classes which are used to bound the dual Selmer group. The starting point of the present memoir is the observation that Kolyvagin's systems of derivative classes satisfy stronger interrelations than have previously been recognized. We call a system of cohomology classes satisfying these stronger interrelations a Kolyvagin system.We show that the extra interrelations give Kolyvagin systems an interesting rigid structure which in many ways resembles (an enriched version of) the 'leading term' of an $L$-function. By making use of the extra rigidity we also prove that Kolyvagin systems exist for many interesting representations for which no Euler system is known, and further that there are Kolyvagin systems for these representations which give rise to exact formulas for the size of the dual Selmer group, rather than just upper bounds.