Vyhledávat v databázi titulů je možné dle ISBN, ISSN, EAN, č. ČNB, OCLC či vlastního identifikátoru. Vyhledávat lze i v databázi autorů dle id autority či jména.

Projekt ObalkyKnih.cz sdružuje různé zdroje informací o knížkách do jedné, snadno použitelné webové služby. Naše databáze v tuto chvíli obsahuje 3150311 obálek a 950589 obsahů českých a zahraničních publikací. Naše API využívá většina knihoven v ČR.

Registrovat »    Zapomenuté heslo?

Differential Geometry and Analysis on CR Manifolds (Progress in Mathematics)

Rok: 2006
ISBN: 9780817643881
OKCZID: 110330726

Citace (dle ČSN ISO 690):
DRAGOMIR, Sorin. Differential geometry and analysis on CR manifolds. Boston: Birkhäuser, c2006. xiv, 487 s. Progress in mathematics, vol. 246.


Anotace

The study of CR manifolds lies at the intersection of three main mathematical disciplines: partial differential equations, complex analysis in several complex variables, and differential geometry. While the PDE and complex analytic aspects have been intensely studied in the last fifty years, much effort has recently been made to understand the differential geometric side of the subject. This monograph provides a unified presentation of several differential geometric aspects in the theory of CR manifolds and tangential Cauchy–Riemann equations. It presents the major differential geometric acheivements in the theory of CR manifolds, such as the Tanaka–Webster connection, Fefferman's metric, pseudo-Einstein structures and the Lee conjecture, CR immersions, subelliptic harmonic maps as a local manifestation of pseudoharmonic maps from a CR manifold, Yang–Mills fields on CR manifolds, to name a few. It also aims at explaining how certain results from analysis are employed in CR geometry. Motivated by clear exposition, many examples, explicitly worked-out geometric results, and stimulating unproved statements and comments referring to the most recent aspects of the theory, this monograph is suitable for researchers and graduate students in differential geometry, complex analysis, and PDEs.


Dostupné zdroje

Přidat komentář a hodnocení