Vyhledávat v databázi titulů je možné dle ISBN, ISSN, EAN, č. ČNB, OCLC či vlastního identifikátoru. Vyhledávat lze i v databázi autorů dle id autority či jména.
Projekt ObalkyKnih.cz sdružuje různé zdroje informací o knížkách do jedné, snadno použitelné webové služby. Naše databáze v tuto chvíli obsahuje 3150311 obálek a 950589 obsahů českých a zahraničních publikací. Naše API využívá většina knihoven v ČR.
Rok: 2005
ISBN: 9780821839188
OKCZID: 110720131
Citace (dle ČSN ISO 690):
GUILLEMIN, Victor. Convexity properties of Hamiltonian group actions. Providence, R.I.: American Mathematical Society, c2005. iv, 82 s. CRM monograph series, v. 26.
This is a monograph on convexity properties of moment mappings in symplectic geometry. The fundamental result in this subject is the Kirwan convexity theorem, which describes the image of a moment map in terms of linear inequalities. This theorem bears a close relationship to perplexing old puzzles from linear algebra, such as the Horn problem on sums of Hermitian matrices, on which considerable progress has been made in recent years following a breakthrough by Klyachko. The book presents a simple local model for the moment polytope, valid in the ""generic"" case, and an elementary Morse-theoretic argument deriving the Klyachko inequalities and some of their generalizations. It reviews various infinite-dimensional manifestations of moment convexity, such as the Kostant type theorems for orbits of a loop group (due to Atiyah and Pressley) or a symplectomorphism group (due to Bloch, Flaschka and Ratiu). Finally, it gives an account of a new convexity theorem for moment map images of orbits of a Borel subgroup of a complex reductive group acting on a Kahler manifold, based on potential-theoretic methods in several complex variables. This volume is recommended for independent study and is suitable for graduate students and researchers interested in symplectic geometry, algebraic geometry, and geometric combinatorics.