Vyhledávat v databázi titulů je možné dle ISBN, ISSN, EAN, č. ČNB, OCLC či vlastního identifikátoru. Vyhledávat lze i v databázi autorů dle id autority či jména.

Projekt ObalkyKnih.cz sdružuje různé zdroje informací o knížkách do jedné, snadno použitelné webové služby. Naše databáze v tuto chvíli obsahuje 3151651 obálek a 950616 obsahů českých a zahraničních publikací. Naše API využívá většina knihoven v ČR.

Registrovat »    Zapomenuté heslo?

The Oxford Handbook of Functional Data Analysis (Oxford Handbooks)

Rok: 2011
ISBN: 9780199568444
OKCZID: 110913917

Citace (dle ČSN ISO 690):
FERRATY, Frédéric, ed. a ROMAIN, Yves, ed. The Oxford handbook of functional data analysis. 1st pub. Oxford: Oxford University Press, 2011. xvi, 494 s.


Anotace

As technology progresses, we are able to handle larger and larger datasets. At the same time, monitoring devices such as electronic equipment and sensors (for registering images, temperature, etc.) have become more and more sophisticated. This high-tech revolution offers the opportunity to observe phenomena in an increasingly accurate way by producing statistical units sampled over a finer and finer grid, with the measurement points so close that the data can be considered as observations varying over a continuum. Such continuous (or functional) data may occur in biomechanics (e.g. human movements), chemometrics (e.g. spectrometric curves), econometrics (e.g. the stock market index), geophysics (e.g. spatio-temporal events such as El Nino or time series of satellite images), or medicine (electro-cardiograms/electro-encephalograms).It is well known that standard multivariate statistical analyses fail with functional data. However, the great potential for applications has encouraged new methodologies able to extract relevant information from functional datasets. This Handbook aims to present a state of the art exploration of this high-tech field, by gathering together most of major advances in this area. Leading international experts have contributed to this volume with each chapter giving the key original ideas and comprehensive bibliographical information. The main statistical topics (classification, inference, factor-based analysis, regression modelling, resampling methods, time series, random processes) are covered in the setting of functional data. The twin challenges of the subject are the practical issues of implementing new methodologies and the theoretical techniques needed to expand the mathematical foundations and toolbox. The volume therefore mixes practical, methodological and theoretical aspects of the subject, sometimes within the same chapter. As a consequence, this book should appeal to a wide audience of engineers, practitioners and graduate students, as well as academic researchers, not only in statistics and probability but also in the numerous related application areas.


Dostupné zdroje

Přidat komentář a hodnocení