Vyhledávat v databázi titulů je možné dle ISBN, ISSN, EAN, č. ČNB, OCLC či vlastního identifikátoru. Vyhledávat lze i v databázi autorů dle id autority či jména.

Projekt ObalkyKnih.cz sdružuje různé zdroje informací o knížkách do jedné, snadno použitelné webové služby. Naše databáze v tuto chvíli obsahuje 3152121 obálek a 950676 obsahů českých a zahraničních publikací. Naše API využívá většina knihoven v ČR.

Registrovat »    Zapomenuté heslo?

Statistical Computing: An Introduction to Data Analysis using S-Plus

Rok: 2002
ISBN: 9780471560401
OKCZID: 110080488

Citace (dle ČSN ISO 690):
CRAWLEY, Michael J. Statistical computing: an introduction to data analysis using S-Plus. Chichester: John Wiley & Sons, c2002. ix, 761 s.

Hodnocení: 4.0 / 5 (6 hlasů)


Anotace

Many statistical modelling and data analysis techniques can be difficult to grasp and apply, and it is often necessary to use computer software to aid the implementation of large data sets and to obtain useful results. S-Plus is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply a number of statistical methods, ranging from simple regression to time series or multivariate analysis. This text offers extensive coverage of many basic and more advanced statistical methods, concentrating on graphical inspection, and features step-by-step instructions to help the non-statistician to understand fully the methodology. Extensive coverage of basic, intermediate and advanced statistical methods Uses S-Plus, which is recognised globally as one of the most powerful and flexible statistical software packages Emphasis is on graphical data inspection, parameter estimation and model criticism Features hundreds of worked examples to illustrate the techniques described Accessible to scientists from a large number of disciplines with minimal statistical knowledge Written by a leading figure in the field, who runs a number of successful international short courses Accompanied by a Web site featuring worked examples, data sets, exercises and solutions A valuable reference resource for researchers, professionals, lecturers and students from statistics, the life sciences, medicine, engineering, economics and the social sciences.


Dostupné zdroje

Přidat komentář a hodnocení