Vyhledávat v databázi titulů je možné dle ISBN, ISSN, EAN, č. ČNB, OCLC či vlastního identifikátoru. Vyhledávat lze i v databázi autorů dle id autority či jména.

Projekt ObalkyKnih.cz sdružuje různé zdroje informací o knížkách do jedné, snadno použitelné webové služby. Naše databáze v tuto chvíli obsahuje 3152128 obálek a 950683 obsahů českých a zahraničních publikací. Naše API využívá většina knihoven v ČR.

Registrovat »    Zapomenuté heslo?

Surfaces with constant mean curvature

Autor: Kenmotsu, K.
Rok: c2003.
ISBN: 9780821834794
OKCZID: 110160141

Citace (dle ČSN ISO 690):
KENMOTSU, K. Surfaces with constant mean curvature. Providence: American Mathematical Society, c2003. x, 142 s. Translations of mathematical monographs, v. 221.


Anotace

The mean curvature of a surface is an extrinsic parameter measuring how the surface is curved in the three-dimensional space. A surface whose mean curvature is zero at each point is a minimal surface, and it is known that such surfaces are models for soap film. There is a rich and well-known theory of minimal surfaces. A surface whose mean curvature is constant but nonzero is obtained when we try to minimize the area of a closed surface without changing the volume it encloses. An easy example of a surface of constant mean curvature is the sphere. A nontrivial example is provided by the constant curvature torus, whose discovery in 1984 gave a powerful incentive for studying such surfaces. Later, many examples of constant mean curvature surfaces were discovered using various methods of analysis, differential geometry, and differential equations. It is now becoming clear that there is a rich theory of surfaces of constant mean curvature. In this book, the author presents numerous examples of constant mean curvature surfaces and techniques for studying them. Many finely rendered figures illustrate the results and allow the reader to visualize and better understand these beautiful objects.


Dostupné zdroje

Přidat komentář a hodnocení